首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
开发高效水氧化催化剂对于太阳能分解水制氢和 CO2还原都具有重要意义. 我们之前的研究表明, 基于 Ru-bda(bda= 2,2'-联吡啶-6,6'-二羧酸) 单体的双核钌催化剂在以 (NH4)2Ce(NO3)6为氧化剂的化学法水氧化反应中表现出良好的催化性能, 比相同条件下单核钌催化剂的活性高出一个数量级. 然而, 该类双核钌催化剂的光催化水氧化性能尚未被系统研究.因此我们考察了以丙烷桥双核钌配合物为催化剂、[Ru(bpy)3]Cl2为光敏剂、Na2S2O8为电子牺牲体组成的三组分体系的光催化性能, 并和相应的单核钌催化剂进行了对比, 同时考察了溶液中乙腈的含量对单、双核钌分子催化剂光催化产氧性能和产氧机理的影响.实验结果表明, 无论是单核还是双核钌催化剂, 其催化活性与乙腈在磷酸缓冲溶液中的比例密切相关. 乙腈的含量不仅影响了水氧化的驱动力, 而且影响 O-O 的形成机理, 改变反应的动力学和反应速率. 单、双核钌催化剂的活性都随着乙腈比例的增加而增加, 然而双核钌催化剂在低乙腈含量的缓冲溶液中展现优于单核钌催化剂的光催化性能; 而在高乙腈含量的缓冲溶液中, 双核钌催化剂和单核钌催化剂的光催化性能趋于相当. 在最优化条件 (60% 乙腈) 下, 双核钌的光催化产氧 TON 值达到 638, 在 450 nm 的光量子效率达到 77%. 我们还发现, 当乙腈浓度较低时, 单核钌催化剂 Ru-bda 催化的水氧化反应为二级动力学; 当乙腈浓度较高时, 该催化剂在反应中表现为一级动力学. 从而推测 O-O 键的形成机制由双分子自由基耦合转变成单分子亲核进攻, 也解释了为什么高乙腈含量下单核和双核钌催化剂的活性差别不大. 本研究所展示的 Ru-bda 的溶剂效应可能同样适用于电化学和光电化学水氧化, 对深入理解和设计高效太阳能分解水器件具有重要意义.  相似文献   

2.
3.
开发低成本、高活性且稳定的非贵金属催化剂是实现大规模电解水制氢的关键所在。在此,我们通过简便、合理的电沉积法在泡沫镍(NF)上构建了一种具备超薄二维纳米片形貌的高度非晶相Co1Fe1-P薄膜用于高效催化析氧反应(OER)。在1.0mol·L-1 KOH溶液中,所制备的Co1Fe1-P/NF催化剂在电流密度为10和100 mA·cm-2处的过电位分别为274.4和329.5 mV,Tafel斜率仅为45.3 mV·dec-1,可以媲美商业RuO2催化剂。此外,Co1Fe1-P/NF催化剂在10 mA·cm-2的100 h计时电压法测试和1 000次循环伏安法测试中均表现出卓越的催化稳定性。Co1Fe1-P/NF催化剂优秀的催化活性归因于其独特的形貌、高度非晶相结构提供的低能垒、优化的电子结构以及钴磷化物和铁磷化物的强协同效应。  相似文献   

4.
开发低成本、高活性且稳定的非贵金属催化剂是实现大规模电解水制氢的关键所在。在此,我们通过简便、合理的电沉积法在泡沫镍(NF)上构建了一种具备超薄二维纳米片形貌的高度非晶相Co1Fe1-P薄膜用于高效催化析氧反应(OER)。在1.0mol·L-1 KOH溶液中,所制备的Co1Fe1-P/NF催化剂在电流密度为10和100 mA·cm-2处的过电位分别为274.4和329.5 mV,Tafel斜率仅为 45.3 mV·dec-1,可以媲美商业 RuO2催化剂。此外,Co1Fe1-P/NF 催化剂在 10 mA·cm-2的 100 h 计时电压法测试和1 000次循环伏安法测试中均表现出卓越的催化稳定性。Co1Fe1-P/NF催化剂优秀的催化活性归因于其独特的形貌、高度非晶相结构提供的低能垒、优化的电子结构以及钴磷化物和铁磷化物的强协同效应。  相似文献   

5.
The mechanism of the oxygen evolution reaction (OER) by catalysts prepared by electrodepositions from Co(2+) solutions in phosphate electrolytes (Co-Pi) was studied at neutral pH by electrokinetic and (18)O isotope experiments. Low-potential electrodepositions enabled the controlled preparation of ultrathin Co-Pi catalyst films (<100 nm) that could be studied kinetically in the absence of mass transport and charge transport limitations to the OER. The Co-Pi catalysts exhibit a Tafel slope approximately equal to 2.3 × RT/F for the production of oxygen from water in neutral solutions. The electrochemical rate law exhibits an inverse first order dependence on proton activity and a zeroth order dependence on phosphate for [Pi] ≥ 0.03 M. In the absence of phosphate buffer, the Tafel slope is increased ~3-fold and the overall activity is greatly diminished. Together, these electrokinetic studies suggest a mechanism involving a rapid, one electron, one proton equilibrium between Co(III)-OH and Co(IV)-O in which a phosphate species is the proton acceptor, followed by a chemical turnover-limiting process involving oxygen-oxygen bond coupling.  相似文献   

6.
Cobalt-iron (Co-Fe) nanocubes were directly electrodeposited onto carbon paper and utilized as efficient oxygen evolution reaction catalysts for rechargeable zinc-air batteries. The morphology and mass loading were directly controlled by adjusting deposition time and the deposits evolved from single crystal nanocubes into a continuous film. Co-Fe catalysts exhibited low overpotential, small Tafel slopes and high durability during testing. A zinc-air battery using Co-Fe showed the same cycling efficiency as one using commercial Pt/Ru catalysts.  相似文献   

7.
8.
9.
析氧反应(OER)是电解水制氢的关键步骤,开发高效、稳定、廉价的OER电催化剂是目前该领域的研究热点.碱性电解液中的OER电催化剂成分以Mn、Fe、Co、Ni等为主,其中单一组分的Fe基化合物催化活性不高,但碱性电解液中的痕量铁杂质极易掺入Ni、Co等非Fe基材料的结构中,极大影响其OER催化性能,即现有大部分非Fe基...  相似文献   

10.
A recoverable, water soluble, hydrogenation catalyst was synthesized by reacting poly-N-isopropylacrylamide containing a terminal amino group (H2N-CH2CH2-S-pNIPAAm) with [Rh(CO)2Cl]2 in organic solvents to form the square planar rhodium complex (Rh(CO)2Cl(H2N-CH2CH2-S-pNIPAAm)). The catalyst-ligand structure was characterized using in situ multinuclear NMR, XAFS and IR spectroscopic methods. Model complexes containing glycine (H2NCH2COOH), cysteamine (H2NCH2CH2SH) and methionine methyl ester (H2NCH(CH2CH2SCH3)COOCH3) ligands were studied to aid in the interpretation of the coordination sphere of the rhodium catalyst. The spectroscopic data revealed a switch in ligation from the amine bound (Rh-NH2-CH2CH2-S-pNIPAAm) to the thioether bound (Rh-S(-CH2CH2NH2)(-pNIPAAm)) rhodium when the complex was dissolved in water. The evolution of the structure of the rhodium complex dissolved in water was followed by XAFS. The structure changed from the expected monomeric complex to form a rhodium cluster of up to four rhodium atoms containing one SRR′ ligand and one CO ligand per rhodium center. No metallic rhodium was observed during this transformation. The rhodium-rhodium interactions were disrupted when an alkene (3-butenol) was added to the aqueous solution. The kinetics of the hydrogenation reaction were measured using a novel high-pressure flow-through NMR system and the catalyst was found to have a TOF of 3000/Rh/h at 25 °C for the hydrogenation of 3-butenol in water.  相似文献   

11.
BiVO(4) films were prepared by a simple electrodeposition and annealing procedure and studied as oxygen evolving photoanodes for application in a water splitting photoelectrochemical cell. The resulting BiVO(4) electrodes maintained considerable photocurrent for photo-oxidation of sulfite, but generated significantly reduced photocurrent for photo-oxidation of water to oxygen, also decaying over time, suggesting that the photoelectrochemical performance of BiVO(4) for water oxidation is mainly limited by its poor catalytic ablity to oxidize water. In order to improve the water oxidation kinetics of the BiVO(4) electrode, a layer of FeOOH was placed on the BiVO(4) surface as an oxygen evolution catalyst using a new photodeposition route. The resulting BiVO(4)/FeOOH photoanode exhibitied significantly improved photocurrent and stability for photo-oxidation of water, which is one of the best among all oxide-based phoatoanode systems reported to date. In particular, the BiVO(4)/FeOOH photoanode showed an outstanding performance in the low bias region (i.e., E < 0.8 V vs RHE), which is critical in determining the overall operating current density when assembling a complete p-n photoelectrochemical diode cell. The photocurrent-to-O(2) conversion efficiency of the BiVO(4)/FeOOH photoanode is ca. 96%, confirming that the photogenerated holes in the BiVO(4)/FeOOH photoanode are indeed excusively used for O(2) evolution.  相似文献   

12.
A large group of mononuclear non-heme iron enzymes exist which activate dioxygen to catalyze key biochemical transformations, including many of medical, pharmaceutical and environmental significance. These enzymes utilize high-spin Fe(II) active sites and additional reducing equivalents from cofactors or substrates to react with O2 to yield iron-oxygen intermediates competent to transform substrate to product. While Fe(II) sites have been difficult to study due to the lack of dominant spectroscopic features, a spectroscopic methodology has been developed which allows the elucidation of the geometric and electronic structures of these active sites and provides molecular level insight into the mechanisms of catalysis. This review provides a summary of this methodology with emphasis on its application to the determination of important active site structure-function correlations in mononuclear non-heme iron enzymes. These studies provide key insight into the mechanisms of oxygen activation, active site features that contribute to differences in reactivity and, combined with theoretical calculations and model studies, the nature of oxygen intermediates active in catalysis.  相似文献   

13.
14.
Hydrogen evolution on a platinum cathode taking place in Na2SO4 as electrolyte, is catalyzed by the formation of samarium hydroxide deposited on platinum. It is shown by voltammetric experiments that the quantity of adsorbed hydrogen is greater with samarium than without it and the H2O reduction reaction is an irreversible process due, presumably, to a reaction between the adsorbed hydrogen and samarium hydroxide.
Na2SO4, , . , , H2O .
  相似文献   

15.
Summary The method of chemisorption equilibria was applied to the determination of the energy of bonding of the surface of a nickel catalyst with oxygen. Values of 57.1–57.9 kcal were obtained for the region of medium coverages.  相似文献   

16.
A hybrid catalyst composed of a platinum thin layer and modified with manganese oxide (MnOx) is recommended for the oxygen evolution reaction (OER). The Pt layer of the catalyst was physically sputtered onto a TiOx-coated Si substrate (this TiOx layer was sputtered inbetween the Si substrate and Pt layer to improve their adhesion and prevent their mutual diffusion). On top of the Pt layer, another thin TiOx layer (∼60 nm) was spun before the electrochemical deposition of MnOx. The investigation focused primarily to evaluate the impact of the catalyst’s annealing in oxygen atmosphere on its catalytic activity toward OER. Interestingly, before the modification with MnOx, a large catalytic enhancement both in activity (∼228 mV negative shift at 20 mA cm−2 if compared to conventional bare Pt catalysts) and stability was achieved at the catalyst annealed at 600 °C toward OER in 0.5 M KOH. Surprisingly, the addition of MnOx to the catalyst synergized a boosted activity amplifying the negative shift to 470 mV at the same current density. Bunch of materials and electrochemical techniques were combined to reveal important remarks about the catalyst’s morphology, structure, composition and intrinsic activity which was attributed to electronic rather than geometric factors.  相似文献   

17.
Zirconocene complexes carrying substituents at various positions of their ring-bridged ligand frameworks were studied as catalysts for methylalumoxane-activated propene polymerization. Effects of different substitution patterns on catalyst activities and on chain lengths and stereo- and regio-regularities of the polymers produced are correlated with geometrical features of the complexes, e.g. with parameters describing their structural rigidity or the aperture and obliquity of their coordination gaps.  相似文献   

18.
ABO3-type perovskite oxides(e.g.,LaCoO3)with flexible and adjustable A-and B-sites are ideal model catalysts to unravel the relationship between the electronic structure and electrocatalytic activity(e.g.,oxygen reduction/evolution reactions,ORR/OER).It has been well understood in our recent work that the secondary metal dopant at B-site(e.g.,Mn in LaMnxCo1-xO3)can regulate the electronic structure and improve the ORR/OER activity.In this work,the Mn-Ni pairs are employed as the dual dopant in LaMnxNiyCozO3(x+y+z=1)catalysts toward bifunctional ORR and OER.The structure-property relationships between the triple metal B-site(Mn,Ni and Co)and the electrochemical performance are particularly investigated.Compared to the individual Mn doping(e.g.,LaMnCoO3(Mn:Co=1:3)catalyst),the dual Mn-Ni doping significantly improves the ORR mass activity@0.8 V by 1.54 times;meanwhile,the OER overpotential@10 mA cm-2 is reduced from 420 to 370 mV,and the OER current density at 1.55 V is increased by 2.43 times.Reasonably,the potential gap between EDRR@-1 mA cm-2 and EDER@10 mA cm-2 is achieved as only 0.76 V by using the optimal LaMnxNiyCozO3(x:y:z=1:2:3)catalyst.It is revealed that the dual Mn-Ni dopant efficiently optimizes electron structures of the LaMnNiCoO3(1:2:3)catalyst,which not only decreases the eg orbital electron number,but also modulates the O 2 p-band closer to the Femi level,accounting for the enhanced bifunctional activity.  相似文献   

19.
Kinetic data of glucose oxidation in aqueous solution catalyzed by heterogeneous palladium catalyst are presented under conditions of the catalyst reversible deactivation by oxygen. Measurements were run in a semi-continuous stirred tank reactor at 30°C and atmospheric pressure in kinetic regime. Effect of the reaction mixture composition on the reaction rate is presented. The catalyst activation/reactivation technique is discussed and optimized. Relation between optimal activation time and glucose concentration was defined.  相似文献   

20.
Constructing a low cost,and high-efficiency oxygen evolution reaction(OER)electrocatalyst is of great significance for improving the performance of alkaline electrolyzer,which is still suffering from highenergy consumption.Herein,we created a porous iron phosphide and tungsten oxide self-supporting electrocatalyst with oxygen-containing vacancies on foam nickel(Fe2P-WO2.92/NF)through a facile insitu growth,etching and phosphating strategies.The sequence-controllable strategy will not only generate oxygen vacancies and improve the charge transfer between Fe2P and WO2.92 components,but also improve the catalyst porosity and expose more active sites.Electrochemical studies illustrate that the Fe2P-WO2.92/NF catalyst presents good OER activity with a low overpotential of 267 mV at 100 mA cm-2,a small Tafel slope of 46.3 mV dec-1,high electrical conductivity,and reliable stability at high current density(100 mA cm-2 for over 60 h in 1.0 M KOH solution).Most significantly,the operating cell voltage of Fe2P-WO2.92/NF‖Pt/C is as low as 1.90 V at 400 mA cm-2 in alkaline condition,which is one of the lowest reported in the literature.The electrocatalytic mechanism shows that the oxygen vacancies and the synergy between Fe2P and WO2.92 can adjust the electronic structure and provide more reaction sites,thereby synergistically increasing OER activity.This work provides a feasible strategy to fabricate high-efficiency and stable non-noble metal OER electrocatalysts on the engineering interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号