首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Forward-masked psychophysical spatial tuning curves (fmSTCs) were measured in twelve cochlear-implant subjects, six using bipolar stimulation (Nucleus devices) and six using monopolar stimulation (Clarion devices). fmSTCs were measured at several probe levels on a middle electrode using a fixed-level probe stimulus and variable-level maskers. The average fmSTC slopes obtained in subjects using bipolar stimulation (3.7 dBmm) were approximately three times steeper than average slopes obtained in subjects using monopolar stimulation (1.2 dBmm). Average spatial bandwidths were about half as wide for subjects with bipolar stimulation (2.6 mm) than for subjects with monopolar stimulation (4.6 mm). None of the tuning curve characteristics changed significantly with probe level. fmSTCs replotted in terms of acoustic frequency, using Greenwood's [J. Acoust. Soc. Am. 33, 1344-1356 (1961)] frequency-to-place equation, were compared with forward-masked psychophysical tuning curves obtained previously from normal-hearing and hearing-impaired acoustic listeners. The average tuning characteristics of fmSTCs in electric hearing were similar to the broad tuning observed in normal-hearing and hearing-impaired acoustic listeners at high stimulus levels. This suggests that spatial tuning is not the primary factor limiting speech perception in many cochlear implant users.  相似文献   

2.
The present study assesses the ability of four listeners with high-frequency, bilateral symmetrical sensorineural hearing loss to localize and detect a broadband click train in the frontal-horizontal plane, in quiet and in the presence of a white noise. The speaker array and stimuli are identical to those described by Lorenzi et al. (in press). The results show that: (1) localization performance is only slightly poorer in hearing-impaired listeners than in normal-hearing listeners when noise is at 0 deg azimuth, (2) localization performance begins to decrease at higher signal-to-noise ratios for hearing-impaired listeners than for normal-hearing listeners when noise is at +/- 90 deg azimuth, and (3) the performance of hearing-impaired listeners is less consistent when noise is at +/- 90 deg azimuth than at 0 deg azimuth. The effects of a high-frequency hearing loss were also studied by measuring the ability of normal-hearing listeners to localize the low-pass filtered version of the clicks. The data reproduce the effects of noise on three out of the four hearing-impaired listeners when noise is at 0 deg azimuth. They reproduce the effects of noise on only two out of the four hearing-impaired listeners when noise is at +/- 90 deg azimuth. The additional effects of a low-frequency hearing loss were investigated by attenuating the low-pass filtered clicks and the noise by 20 dB. The results show that attenuation does not strongly affect localization accuracy for normal-hearing listeners. Measurements of the clicks' detectability indicate that the hearing-impaired listeners who show the poorest localization accuracy also show the poorest ability to detect the clicks. The inaudibility of high frequencies, "distortions," and reduced detectability of the signal are assumed to have caused the poorer-than-normal localization accuracy for hearing-impaired listeners.  相似文献   

3.
In the course of measuring the real-ear attenuation at threshold (REAT) of experimenter-inserted E-A-R foam earplugs on 100 subjects, a statistically significant correlation was observed between attenuation and hearing level (for normal listeners, HTL less than or equal to 20 dB) at test frequencies from 2-8 kHz. Listeners with more sensitive hearing obtained better protection. The relationship was most robust at 6 and 8 kHz. For hearing levels greater than 20 dB, attenuation appeared independent of hearing level. A hypothesis was developed to explain the relationship for the normal listeners, based upon the fact that the high-frequency attenuation of the earplug was nearly bone-conduction limited. The hypothesis suggested that the attenuation of a hearing protector that provided substantially lower protection would not exhibit the same relationship. Data for such a device were collected for 70 subjects, and indeed demonstrated reduced correlation between attenuation and hearing level. Implications of the results of the experiments are discussed with regard to hearing level requirements for hearing protector attenuation test subjects, utilization of hearing-impaired listeners to measure REAT at suprathreshold (with respect to normal listeners) sound pressure levels, and linearity of hearing protector attenuation as a function of sound level.  相似文献   

4.
Speaking rate of adventitiously deaf male cochlear implant candidates   总被引:1,自引:0,他引:1  
No objective group data on speaking rate or speaking duration have been reported on the speech of adventitiously profoundly hearing-impaired adults. Results of the present study showed that speaking rate, i.e., number of syllables per second, was significantly slower and speaking duration was significantly longer for 25 adventitiously profoundly hearing-impaired adult male cochlear implant candidates than for 10 normal-hearing control subjects. The factors of length of time since onset of profound hearing loss and hearing aid use did not significantly affect speaking rate. Based on these objective data, a rationale and method are presented for aural rehabilitation of the profoundly hearing-impaired who exhibit speaking rate abnormalities.  相似文献   

5.
The ability of normally hearing and hearing-impaired subjects to use temporal fine structure information in complex tones was measured. Subjects were required to discriminate a harmonic complex tone from a tone in which all components were shifted upwards by the same amount in Hz, in a three-alternative, forced-choice task. The tones either contained five equal-amplitude components (non-shaped stimuli) or contained many components, but were passed through a fixed bandpass filter to reduce excitation pattern changes (shaped stimuli). Components were centered at nominal harmonic numbers (N) 7, 11, and 18. For the shaped stimuli, hearing-impaired subjects performed much more poorly than normally hearing subjects, with most of the former scoring no better than chance when N=11 or 18, suggesting that they could not access the temporal fine structure information. Performance for the hearing-impaired subjects was significantly improved for the non-shaped stimuli, presumably because they could benefit from spectral cues. It is proposed that normal-hearing subjects can use temporal fine structure information provided the spacing between fine structure peaks is not too small relative to the envelope period, but subjects with moderate cochlear hearing loss make little use of temporal fine structure information for unresolved components.  相似文献   

6.
Articulation index (AI) theory was used to evaluate stop-consonant recognition of normal-hearing listeners and listeners with high-frequency hearing loss. From results reported in a companion article [Dubno et al., J. Acoust. Soc. Am. 85, 347-354 (1989)], a transfer function relating the AI to stop-consonant recognition was established, and a frequency importance function was determined for the nine stop-consonant-vowel syllables used as test stimuli. The calculations included the rms and peak levels of the speech that had been measured in 1/3 octave bands; the internal noise was estimated from the thresholds for each subject. The AI model was then used to predict performance for the hearing-impaired listeners. A majority of the AI predictions for the hearing-impaired subjects fell within +/- 2 standard deviations of the normal-hearing listeners' results. However, as observed in previous data, the AI tended to overestimate performance of the hearing-impaired listeners. The accuracy of the predictions decreased with the magnitude of high-frequency hearing loss. Thus, with the exception of performance for listeners with severe high-frequency hearing loss, the results suggest that poorer speech recognition among hearing-impaired listeners results from reduced audibility within critical spectral regions of the speech stimuli.  相似文献   

7.
Temporal masking curves were obtained from 12 normal-hearing and 16 hearing-impaired listeners using 200-ms, 1000-Hz pure-tone maskers and 20-ms, 1000-Hz fixed-level probe tones. For the delay times used here (greater than 40 ms), temporal masking curves obtained from both groups can be well described by an exponential function with a single level-independent time constant for each listener. Normal-hearing listeners demonstrated time constants that ranged between 37 and 67 ms, with a mean of 50 ms. Most hearing-impaired listeners, with significant hearing loss at the probe frequency, demonstrated longer time constants (range 58-114 ms) than those obtained from normal-hearing listeners. Time constants were found to grow exponentially with hearing loss according to the function tau = 52e0.011(HL), when the slope of the growth of masking is unity. The longest individual time constant was larger than normal by a factor of 2.3 for a hearing loss of 52 dB. The steep slopes of the growth of masking functions typically observed at long delay times in hearing-impaired listeners' data appear to be a direct result of longer time constants. When iterative fitting procedures included a slope parameter, the slopes of the growth of masking from normal-hearing listeners varied around unity, while those from hearing-impaired listeners tended to be less (flatter) than normal. Predictions from the results of these fixed-probe-level experiments are consistent with the results of previous fixed-masker-level experiments, and they indicate that deficiencies in the ability to detect sequential stimuli should be considerable in hearing-impaired listeners, partially because of extended time constants, but mostly because forward masking involves a recovery process that depends upon the sensory response evoked by the masking stimulus. Large sensitivity losses reduce the sensory response to high SPL maskers so that the recovery process is slower, much like the recovery process for low-level stimuli in normal-hearing listeners.  相似文献   

8.
The purpose of this study was to examine the effect of spectral-cue audibility on the recognition of stop consonants in normal-hearing and hearing-impaired adults. Subjects identified six synthetic CV speech tokens in a closed-set response task. Each syllable differed only in the initial 40-ms consonant portion of the stimulus. In order to relate performance to spectral-cue audibility, the initial 40 ms of each CV were analyzed via FFT and the resulting spectral array was passed through a sliding-filter model of the human auditory system to account for logarithmic representation of frequency and the summation of stimulus energy within critical bands. This allowed the spectral data to be displayed in comparison to a subject's sensitivity thresholds. For normal-hearing subjects, an orderly function relating the percentage of audible stimulus to recognition performance was found, with perfect discrimination performance occurring when the bulk of the stimulus spectrum was presented at suprathreshold levels. For the hearing-impaired subjects, however, it was found in many instances that suprathreshold presentation of stop-consonant spectral cues did not yield recognition equivalent to that found for the normal-hearing subjects. These results demonstrate that while the audibility of individual stop consonants is an important factor influencing recognition performance in hearing-impaired subjects, it is not always sufficient to explain the effects of sensorineural hearing loss.  相似文献   

9.
An analysis of psychophysical tuning curves in normal and pathological ears   总被引:2,自引:0,他引:2  
Simultaneous psychophysical tuning curves were obtained from normal-hearing and hearing-impaired listeners, using probe tones that were either at similar sound pressure levels or at similar sensation levels for the two types of listeners. Tuning curves from the hearing-impaired listeners were flat, erratic, broad, and/or inverted, depending upon the frequency region of the probe tone and the frequency characteristics of the hearing loss. Tuning curves from the normal-hearing listeners at low-SPL's were sharp as expected; tuning curves at high-SPL's were discontinuous. An analysis of high-SPL tuning curves suggests that tuning curves from normal-hearing listeners reflect low-pass filter characteristics instead of the sharp bandpass filter characteristics seen with low-SPL probe tones. Tuning curves from hearing-impaired listeners at high-SPL probe levels appear to reflect similar low-pass filter characteristics, but with much more gradual high-frequency slopes than in the normal ear. This appeared as abnormal downward spread of masking. Relatively good temporal resolution and broader tuning mechanisms were proposed to explain inverted tuning curves in the hearing-impaired listeners.  相似文献   

10.
Effects of age and mild hearing loss on speech recognition in noise   总被引:5,自引:0,他引:5  
Using an adaptive strategy, the effects of mild sensorineural hearing loss and adult listeners' chronological age on speech recognition in babble were evaluated. The signal-to-babble ratio required to achieve 50% recognition was measured for three speech materials presented at soft to loud conversational speech levels. Four groups of subjects were tested: (1) normal-hearing listeners less than 44 years of age, (2) subjects less than 44 years old with mild sensorineural hearing loss and excellent speech recognition in quiet, (3) normal-hearing listeners greater than 65 with normal hearing, and (4) subjects greater than 65 years old with mild hearing loss and excellent performance in quiet. Groups 1 and 3, and groups 2 and 4 were matched on the basis of pure-tone thresholds, and thresholds for each of the three speech materials presented in quiet. In addition, groups 1 and 2 were similar in terms of mean age and age range, as were groups 3 and 4. Differences in performance in noise as a function of age were observed for both normal-hearing and hearing-impaired listeners despite equivalent performance in quiet. Subjects with mild hearing loss performed significantly worse than their normal-hearing counterparts. These results and their implications are discussed.  相似文献   

11.
The purpose of this study is to specify the contribution of certain frequency regions to consonant place perception for normal-hearing listeners and listeners with high-frequency hearing loss, and to characterize the differences in stop-consonant place perception among these listeners. Stop-consonant recognition and error patterns were examined at various speech-presentation levels and under conditions of low- and high-pass filtering. Subjects included 18 normal-hearing listeners and a homogeneous group of 10 young, hearing-impaired individuals with high-frequency sensorineural hearing loss. Differential filtering effects on consonant place perception were consistent with the spectral composition of acoustic cues. Differences in consonant recognition and error patterns between normal-hearing and hearing-impaired listeners were observed when the stimulus bandwidth included regions of threshold elevation for the hearing-impaired listeners. Thus place-perception differences among listeners are, for the most part, associated with stimulus bandwidths corresponding to regions of hearing loss.  相似文献   

12.
Speech reception thresholds (SRTs) were measured with a competing talker background for signals processed to contain variable amounts of temporal fine structure (TFS) information, using nine normal-hearing and nine hearing-impaired subjects. Signals (speech and background talker) were bandpass filtered into channels. Channel signals for channel numbers above a "cut-off channel" (CO) were vocoded to remove TFS information, while channel signals for channel numbers of CO and below were left unprocessed. Signals from all channels were combined. As a group, hearing-impaired subjects benefited less than normal-hearing subjects from the additional TFS information that was available as CO increased. The amount of benefit varied between hearing-impaired individuals, with some showing no improvement in SRT and one showing an improvement similar to that for normal-hearing subjects. The reduced ability to take advantage of TFS information in speech may partially explain why subjects with cochlear hearing loss get less benefit from listening in a fluctuating background than normal-hearing subjects. TFS information may be important in identifying the temporal "dips" in such a background.  相似文献   

13.
Two experiments are reported which explore variables that may complicate the interpretation of phoneme boundary data from hearing-impaired listeners. Fourteen synthetic consonant-vowel syllables comprising a/ba-da-ga/ continuum were used as stimuli. The first experiment examined the influence of presentation level and ear of presentation in normal-hearing subjects. Only small differences in the phoneme boundaries and labeling functions were observed between ears and across presentation levels. Thus monaural presentation and relatively high signal level do not appear to be complicating factors in research with hearing-impaired listeners, at least for these stimuli. The second experiment described a test procedure for obtaining phoneme boundaries in some hearing-impaired listeners that controlled for between-subject sources of variation unrelated to hearing impairment and delineated the effects of spectral shaping imposed by the hearing impairment on the labeling functions. Labeling data were obtained from unilaterally hearing-impaired listeners under three test conditions: in the normal ear without any signal distortion; in the normal ear listening through a spectrum shaper that was set to match the subject's suprathreshold audiometric configuration; and in the impaired ear. The reduction in the audibility of the distinctive acoustic/phonetic cues seemed to explain all or part of the effects of the hearing impairment on the labeling functions of some subjects. For many other subjects, however, other forms of distortion in addition to reduced audibility seemed to affect their labeling behavior.  相似文献   

14.
The purpose of this experiment was to evaluate the utilization of short-term spectral cues for recognition of initial plosive consonants (/b,d,g/) by normal-hearing and by hearing-impaired listeners differing in audiometric configuration. Recognition scores were obtained for these consonants paired with three vowels (/a,i,u/) while systematically reducing the duration (300 to 10 ms) of the synthetic consonant-vowel syllables. Results from 10 normal-hearing and 15 hearing-impaired listeners suggest that audiometric configuration interacts in a complex manner with the identification of short-duration stimuli. For consonants paired with the vowels /a/ and /u/, performance deteriorated as the slope of the audiometric configuration increased. The one exception to this result was a subject who had significantly elevated pure-tone thresholds relative to the other hearing-impaired subjects. Despite the changes in the shape of the onset spectral cues imposed by hearing loss, with increasing duration, consonant recognition in the /a/ and /u/ context for most hearing-impaired subjects eventually approached that of the normal-hearing listeners. In contrast, scores for consonants paired with /i/ were poor for a majority of hearing-impaired listeners for stimuli of all durations.  相似文献   

15.
Noise and distortion reduce speech intelligibility and quality in audio devices such as hearing aids. This study investigates the perception and prediction of sound quality by both normal-hearing and hearing-impaired subjects for conditions of noise and distortion related to those found in hearing aids. Stimuli were sentences subjected to three kinds of distortion (additive noise, peak clipping, and center clipping), with eight levels of degradation for each distortion type. The subjects performed paired comparisons for all possible pairs of 24 conditions. A one-dimensional coherence-based metric was used to analyze the quality judgments. This metric was an extension of a speech intelligibility metric presented in Kates and Arehart (2005) [J. Acoust. Soc. Am. 117, 2224-2237] and is based on dividing the speech signal into three amplitude regions, computing the coherence for each region, and then combining the three coherence values across frequency in a calculation based on the speech intelligibility index. The one-dimensional metric accurately predicted the quality judgments of normal-hearing listeners and listeners with mild-to-moderate hearing loss, although some systematic errors were present. A multidimensional analysis indicates that several dimensions are needed to describe the factors used by subjects to judge the effects of the three distortion types.  相似文献   

16.
The effects of intensity on monosyllabic word recognition were studied in adults with normal hearing and mild-to-moderate sensorineural hearing loss. The stimuli were bandlimited NU#6 word lists presented in quiet and talker-spectrum-matched noise. Speech levels ranged from 64 to 99 dB SPL and S/N ratios from 28 to -4 dB. In quiet, the performance of normal-hearing subjects remained essentially constant in noise, at a fixed S/N ratio, it decreased as a linear function of speech level. Hearing-impaired subjects performed like normal-hearing subjects tested in noise when the data were corrected for the effects of audibility loss. From these and other results, it was concluded that: (1) speech intelligibility in noise decreases when speech levels exceed 69 dB SPL and the S/N ratio remains constant; (2) the effects of speech and noise level are synergistic; (3) the deterioration in intelligibility can be modeled as a relative increase in the effective masking level; (4) normal-hearing and hearing-impaired subjects are affected similarly by increased signal level when differences in speech audibility are considered; (5) the negative effects of increasing speech and noise levels on speech recognition are similar for all adult subjects, at least up to 80 years; and (6) the effective dynamic range of speech may be larger than the commonly assumed value of 30 dB.  相似文献   

17.
A conditional-on-a-single-stimulus (COSS) analysis procedure [B. G. Berg, J. Acoust. Soc. Am. 86, 1743-1746 (1989)] was used to estimate how well normal-hearing and hearing-impaired listeners selectively attend to individual spectral components of a broadband signal in a level discrimination task. On each trial, two multitone complexes consisting of six octave frequencies from 250 to 8000 Hz were presented to listeners. The levels of the individual tones were chosen independently and at random on each presentation. The target tone was selected, within a block of trials, as the 250-, 1000-, or 4000-Hz component. On each trial, listeners were asked to indicate which of the two complex sounds contained the higher level target. As a group, normal-hearing listeners exhibited greater selectivity than hearing-impaired listeners to the 250-Hz target, while hearing-impaired listeners showed greater selectivity than normal-hearing listeners to the 4000-Hz target, which is in the region of their hearing loss. Both groups of listeners displayed large variability in their ability to selectively weight the 1000-Hz target. Trial-by-trial analysis showed a decrease in weighting efficiency with increasing frequency for normal-hearing listeners, but a relatively constant weighting efficiency across frequency for hearing-impaired listeners. Interestingly, hearing-impaired listeners selectively weighted the 4000-Hz target, which was in the region of their hearing loss, more efficiently than did the normal-hearing listeners.  相似文献   

18.
Speech-reception thresholds (SRT) were measured for 17 normal-hearing and 17 hearing-impaired listeners in conditions simulating free-field situations with between one and six interfering talkers. The stimuli, speech and noise with identical long-term average spectra, were recorded with a KEMAR manikin in an anechoic room and presented to the subjects through headphones. The noise was modulated using the envelope fluctuations of the speech. Several conditions were simulated with the speaker always in front of the listener and the maskers either also in front, or positioned in a symmetrical or asymmetrical configuration around the listener. Results show that the hearing impaired have significantly poorer performance than the normal hearing in all conditions. The mean SRT differences between the groups range from 4.2-10 dB. It appears that the modulations in the masker act as an important cue for the normal-hearing listeners, who experience up to 5-dB release from masking, while being hardly beneficial for the hearing impaired listeners. The gain occurring when maskers are moved from the frontal position to positions around the listener varies from 1.5 to 8 dB for the normal hearing, and from 1 to 6.5 dB for the hearing impaired. It depends strongly on the number of maskers and their positions, but less on hearing impairment. The difference between the SRTs for binaural and best-ear listening (the "cocktail party effect") is approximately 3 dB in all conditions for both the normal-hearing and the hearing-impaired listeners.  相似文献   

19.
Algorithms designed to improve speech intelligibility for those with sensorineural hearing loss (SNHL) by enhancing peaks in a spectrum have had limited success. Since testing of such algorithms cannot separate the theory of the design from the implementation itself, the contribution of each of these potentially limiting factors is not clear. Therefore, psychophysical paradigms were used to test subjects with either normal hearing or SNHL in detection tasks using well controlled stimuli to predict and assess the limits in performance gain from a spectrally enhancing algorithm. A group of normal-hearing (NH) and hearing-impaired (HI) subjects listened in two experiments: auditory filter measurements and detection of incremented harmonics in a harmonic spectrum. The results show that NH and HI subjects have an improved ability to detect incremented harmonics when there are spectral decrements surrounding the increment. Various decrement widths and depths were compared against subjects' equivalent rectangular bandwidths (ERBs). NH subjects effectively used the available energy cue in their auditory filters. Some HI subjects, while showing significant improvements, underutilized the energy reduction in their auditory filters.  相似文献   

20.
An articulation index calculation procedure developed for use with individual normal-hearing listeners [C. Pavlovic and G. Studebaker, J. Acoust. Soc. Am. 75, 1606-1612 (1984)] was modified to account for the deterioration in suprathreshold speech processing produced by sensorineural hearing impairment. Data from four normal-hearing and four hearing-impaired subjects were used to relate the loss in hearing sensitivity to the deterioration in speech processing in quiet and in noise. The new procedure only requires hearing threshold measurements and consists of the following two modifications of the original AI procedure of Pavlovic and Studebaker (1984): The speech and noise spectrum densities are integrated over bandwidths which are, when expressed in decibels, larger than the critical bandwidths by 10% of the hearing loss. This is in contrast to the unmodified procedure where integration is performed over critical bandwidths. The contribution of each frequency to the AI is the product of its contribution in the unmodified AI procedure and a "speech desensitization factor." The desensitization factor is specified as a function of the hearing loss. The predictive accuracies of both the unmodified and the modified calculation procedures were assessed by comparing the expected and observed speech recognition scores of four hearing-impaired subjects under various conditions of speech filtering and noise masking. The modified procedure appears accurate for general applications. In contrast, the unmodified procedure appears accurate only for applications where results obtained under various conditions on a single listener are compared to each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号