首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
用固相反应合成了LiCoO2掺杂改性的LiMn2O4锂离子电池正极材料,优化了LiMn2O4的改性路径及制备条件.利用SEM、XRD对产物的结构进行了表征,并测试了产物的电化学性能.结果表明:所得产物均具有尖晶石型LiMn2O4结构.LiCoO2的掺入增加了尖晶石结构的稳定性,改善了尖晶石型LiMn2O4的充放电循环性能.  相似文献   

2.
目前商品化的锂离子电池大都采用LiCoO2作为正极材料[1],工业上锂钴氧化物(LiCoO2)多采用高温固相合成法生产,烧结时间长达24-48h,制得的粉末粒度大分布范围广,形貌不规整[2]。溶胶 凝胶法前驱体的制备比较麻烦[3]。我们用固相配位化学反应法合成锂钴氧化物Li CoO2,操作简便兼具反应温度低、反应时间短、粒度分布均匀的优点[4,5]。本文采用氢氧化锂、乙酸钴和柠檬酸为原料,通过低热固相反应合成了Li+与Co2+达到分子级混合水平的前驱体、在400-800℃焙烧得LiCoO2产品,通过热重/差热、X射线衍射、扫描电镜和粒…  相似文献   

3.
It is a technological problem of LiNiO2 cathode material for lithium-ion secondary batteries because of the difficult preparation and hard purification, instable performance, remarkable capacity fading at initial discharge, worse thermal stability and safety of Ni-series cathode materials,and it is also the key factor of hindering LiNiO2 cathode material from practical applications.Recently, by doping some metal cations such as Co, Mn, Mg, Al, Cr and so on[1-5] into LiNiO2, the preparation difficulty and the purification hardness can be obviously improved, and the initial irreversible discharge capacity can be reduced, and the ratio of the initial discharge to charge capacity can be enhanced. But the cyclic stability, thermal stability and safety of LiNiO2 are not enough to satisfy the demand of commercial use.At present, the synthesis of LiNiO2 cathode material must be sintered under oxygen atmosphere in most cases, and the improved effect of fluoride doping on the electrochemical properties of LiNiO2 has seldom been reported in the literatures.In this paper, the cobalt cation and fluorine anion co-doping cathode materials Li1+δNi1-xCoxO2-yFy( 0≤δ≤0.2, 0≤x≤0.5, 0≤y≤0.1 ) were synthesized by solid state reaction method at 650℃ ~750℃ under air atmosphere, and characterized by XRD、 SEM、 TEM、 BET、 laser particle-size distribution measurement and electrochemical performance testing, the effect of different nickel sources on the properties of as-synthesized cathode materials was investigated. The results demonstrated that the cobalt and fluorine ions co-doping cathode materials Li1+δNi1-xCoxO2-yFy have complete layered structure, uniform surface morphology and better particle-size distribution as well as excellent electrochemical performances. At 20~25℃, 0.15~0.25mA charge and discharge current,4.25~2.70V cut-off voltage, 0.2~0.5C charge and discharge rate and 0.2~0.5 mA/cm2 current density,LiNi0.8Co0.2O1.95F0.05 cathode material has higher initial charge and discharge capacity and better cyclic properties which can be mainly attributed to the doping of the higher electronegativity fluorine which improves the structural stability and the synergistic reaction of cobalt and fluorine ions co-doping on the cathode materials. Under the above conditions, the initial charge and discharge capacity of LiNi0.8Co0.2O1.95F0.05 is 165.70mAh/g and 146.10mAh/g, respectively. After 50 cycles, it has more than 140mAh/g of discharge capacity and displays preliminary application possibility in the future.  相似文献   

4.
Recently, battery technology has come to require a higher rate capability. The main difficulty in high-rate charge-discharge experiments is kinetic problems due to the slow diffusion of Li-ions in electrodes. Nanosizing is a popular way to achieve a higher surface area and shorter Li-ion diffusion length for fast diffusion. However, while various nanoelectrodes that provide excellent high-rate capability have been synthesized, a size-controlled synthesis and a systematic study of nanocrystalline LiCoO2 have not been carried out because of the difficulty in controlling the size. We have established the size-controlled synthesis of nanocrystalline LiCoO2 through a hydrothermal reaction and, for the first time, clarified the structural and electrochemical properties of this intercalation cathode material. Lattice expansion in nanocrystalline LiCoO2 was found from powder X-ray diffraction measurements and Raman spectroscopy. Electrochemical measurements and theoretical analyses on nanocrystalline LiCoO2 revealed that extreme size reduction below 15 nm was not favorable for most applications. An excellent high-rate capability (65% of the 1 C rate capability at 100 C) was observed in nanocrystalline LiCoO2 with an appropriate particle size of 17 nm.  相似文献   

5.
正尖晶石LiMn_2O_4电化学性能研究   总被引:6,自引:1,他引:5  
采用高温固相反应合成了尖晶石LiMn2 O4 锂离子电池正极材料 ,并对其性能进行研究 .综合考察了影响材料电化学性能的主要因素 ,诸如原材料的选择、合成温度、Li/Mn比以及添加金属元素Co等 .研究了材料在高温下的电化学性能和影响因素 ,并分析了LiMn2 O4 在电解质中的溶解和引起容量衰减的原因  相似文献   

6.
Nanostructured LiCoO2 fibers were prepared by the sol-gel related electrospinning technique using metal acetate and citric acid as starting materials. The transformation from the xerogel fibers to the LiCoO2 fibers and the nanostructure of LiCoO2 fibers have been investigated in detail. The LiCoO2 fibers with 500 nm to 2 mum in diameter were composed of polycrystalline nanoparticles in sizes of 20-35 nm. Cyclic voltammetry and charge-discharge experiments were applied to characterize the electrochemical properties of the fibers as cathode materials for lithium-ion batteries. The cyclic voltammogram curves indicated faster diffusion and migration of Li+ cations in the nanostructured LiCoO2 fiber electrode. In the first charge-discharge process, the LiCoO2 fibers showed the initial charge and discharge capacities of 216 and 182 (mA.h)/g, respectively. After the 20th cycle, the discharge capacity decreased to 123 (mA.h)/g. The X-ray diffraction and high-resolution transmission electron microscopy analyses indicated that the large loss of capacity of fiber electrode during the charge-discharge process might mainly result from the dissolution of cobalt and lithium cations escaping from LiCoO2 to form the crystalline Li2CO3 and CoF2 impurities.  相似文献   

7.
采用射频(RF)磁控溅射技术制备了用于全固态薄膜锂电池的非晶态和多晶LiCoO2阴极薄膜,利用XRD和SEM研究了沉积温度对LiCoO2薄膜结构和形貌的影响,并研究了高温退火后薄膜的电化学性能.研究结果表明,随著基片温度的不同,薄膜成分、表面形貌以及电化学行为有明显差异.室温沉积的薄膜很难消除薄膜中Li2CO3的影响,经过高温退火处理后也无法形成有效的多晶LiCoO2薄膜,而150℃沉积的薄膜经过高温退火后形成了有利于锂离子嵌入的多晶LiCoO2结构,薄膜显示出了较好的电化学性能.  相似文献   

8.
SrCo0.8Fe0.2O3-δ (SCF), as a promising cathode material for intermediate temperature solid oxide fuel cells, possesses a high catalytic activity for the reduction of O2 to 2O2−. The SCF powder was successfully synthesized by the solid state reaction method and Pechini method and characterized using XRD, particle analysis, and electrochemical performance measurements. Smaller-particle-size SCF materials (SCF-P) with single phase are obtained at lower synthesis temperature by the Pechini method and possess better electrochemical performance as compared with those prepared by the solid state reaction method. The reason is that the Pechini method involves the mixing of elements at atomic level, so pure SCF phase formation can be accelerated and showed high electrocatalytic activity. The preparation procedure of SCF cathode was firstly investigated using electrochemical impedance spectroscopy. Results show that the total polarization resistance and the low-frequency resistance decrease gradually with the reduction of the calcination temperature for the SCF cathodes. The SCF-P cathode sintered at 1,000 °C possesses the highest porosity and the best electrochemical performance. It is the result of a comprehensive function of three-phase boundary length, porosity of cathode, and the adhesion between cathode and electrolyte. The charge-transfer process, together with the adsorption, dissociation, and diffusion of oxygen, has a strong influence on the whole reaction process of the cathode. The influence of binder amounts on the performance of the SCF-P cathodes was also studied.  相似文献   

9.
目前研究较多的锂离子电池正极材料主要有LiCoO2、LiNiO2和LiMn2O4犤1犦,虽然LiCoO2的成本相对较高,但LiCoO2具有最为优良的电化学性能,如高且平稳的充放电平台、高比容量以及良好的循环性能犤2犦,是目前应用最广泛的商品化电极材料。LiCoO2材料主要采用高温固相法犤3~5犦制备,该方法工艺简单,容易实现大规模生产,但缺点是需要较高的焙烧温度和较长的焙烧时间,且反应原料混合均匀程度有限,易导致非化学计量、非均相以及不规则的颗粒形貌等,因此材料的比容量、循环寿命等电化学性能以及反应的可控性还不甚理想。研究表明犤6犦电极材…  相似文献   

10.
Amorphous and oriented polycrystalline LiCoO2 thin films, used as cathode material for an all-solid-state thin film battery, were fabricated by using RF magnetron sputtering and annealed at different temperatures. The morphology and structure of LiCoO2 thin films were characterized by scanning electron microscopy and X-ray diffraction. All-solid-state thin film batteries, comprised of LiCoO2 cathode films with different structures, lithium phosphorous oxynitride electrolyte film and metallic lithium anode film, was successfully prepared and their properties were examined by chronopotentiometry. Results showed that the structure and crystallinity of the LiCoO2 films strongly influenced the electrochemical performance of all-solid-state thin film lithium batteries. Worth nothing was the battery with an oriented polycrystalline LiCoO2 film it exhibited the best electrochemical performance, and delivered a discharge capacity of ~55.4 μAh/cm2μm. Furthermore, when subjected to over 450 charge/discharge cycles, that battery suffered no obvious fode in capacity.  相似文献   

11.
The processes of extraction and insertion of lithium ions in LiCoO(2) cathode are investigated by galvanostatic cycling and electrochemical impedance spectroscopy (EIS) at different potentials during the first charge/discharge cycle and at different temperatures after 10 charge/discharge cycles. The spectra exhibit three semicircles and a slightly inclined line that appear successively as the frequency decreases. An appropriate equivalent circuit is proposed to fit the experimental EIS data. Based on detailed analysis of the change in kinetic parameters obtained from simulating the experimental EIS data as functions of potential and temperature, the high-frequency, the middle-frequency, and the low-frequency semicircles can be attributed to the migration of the lithium ions through the SEI film, the electronic properties of the material and the charge transfer step, respectively. The slightly inclined line arises from the solid state diffusion process. The electrical conductivity of the layered LiCoO(2) changes dramatically at early delithiation as a result of a polaron-to-metal transition. In an electrolyte solution of 1 mol L(-1) LiPF(6)-EC (ethylene carbonate)?:DMC (dimethyl carbonate), the activation energy of the ion jump (which is related to the migration of the lithium ions through the SEI film), the thermal activation energy of the electrical conductivity and the activation energy of the intercalation/deintercalation reaction are 37.7, 39.1 and 69.0 kJ mol(-1), respectively.  相似文献   

12.
二次锂离子电池正极活性材料—LiCoO_2制备研究进展   总被引:1,自引:0,他引:1  
本文简单对比了高温相 LiCoO2和低温相 LiCoO2的结构和电化学性能的差别,详细介绍了 LiCoO2的各种合成方法并评述了不同合成方法、反应条件对 LiCoO2结构、形貌及电化学性能的影响,并提出了今后研究的方向。  相似文献   

13.
Cathode material LiMn2-yCoyO4 spinels were prepared by annealing the mixed precursors, which were synthesized by a low heating solid state coordination method using lithium acetate, manganese acetate, cobalt acetate, and oxalic acid as original materials. The structures and morphologies of the LiMn2-yCoyO4 spinels were investigated as a function of annealing temperature and time. The results showed that all samples in different annealing temperature and time had the same spinel structure. There were some growth and agglomeration in the particles when annealing temperature increased from 450 to 650 degrees C. And the crystal structure was more perfect at the upper temperature. In addition, the electrochemical properties of LiMn2-yCoyO4 spinels used as cathode material for lithium-ion batteries were studied in detail in this paper.  相似文献   

14.
Now LiCoO2 is the most widely used electrode material in commercial rechargeable lithium-based batteries; however, the toxicity of cobalt and the scarcity of cobalt sources, as well as the limited charge/discharge capacity(130-140 mA.h.g-1) of LiCoO2 electrode drive many efforts to develop various alternative electrode materials, including diverse transition metal oxides and their lithiated counterparts. Amongst them, iron oxides,  相似文献   

15.
Electrochemical performances of LiCoO2 as a candidate material for supercapacitor are systematically investigated. LiCoO2 nanomaterials are synthesized via hydrothermal reaction with consequent calcination process. And the particle size increases as the calcination temperature rises.LCO-650 sample with the largest particle size displays the maximum capacitances of 817.5 Fg-1with the most outstanding capacity retention rate of 96.8% after 2000 cycles. It is shown that large particle size is beneficial to the electrochemical and structural stability of Li CoO2 materials. We speculate that the micron-sized waste LiCoO2 materials have great potential for supercapacitor application. It may provide a novel recovered approach for spent LIBs and effectively relieve the burdens on the resource waste and environment pollution.  相似文献   

16.
锂离子电池正极材料层状Li-Ni-Co-Mn-O的研究   总被引:4,自引:0,他引:4  
综述了近年来锂离子电池层状Li-Ni-Co-Mn-O正极材料的研究进展,重点介绍了其合成方法、电化学性能以及掺杂、包覆改性等方面的研究结果。其中,LiNi1/3Co1/3Mn1/3O2材料已成功实现商业化,凭借优异的性价比,该材料将取代LiCoO2。  相似文献   

17.
The first point of this work is to synthesize LiCoO2, LiNi0.8 Co0.2 O2, and LiMn2O4 nanotubes with the template of porous anodic aluminum oxide by thermal decomposition of sol-gel precursors. The as-synthesized materials were open-ended nanotubes with uniform shape and size based on the analysis of scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. An "in situ reaction from nanoparticle to nanotube" mechanism was discussed for the formation process of the nanotubes. The second point of this paper is to investigate the electrochemical properties of the as-synthesized nanotubes for the cathode materials of lithium ion batteries. It was found that the nanotube electrodes exhibited better reversibility and higher discharge capacities than that of their nanocrystalline counterparts. The reason for the improved electrochemical performance of the nanotube electrodes was also interpreted.  相似文献   

18.
吴凯 《电化学》2021,27(1):56-62
目前,合成Na3V2(PO4)2O2F(NVPF)材料的方法包括高温固相法、水热法、溶剂热法等,这些方法均不利于该材料的大规模工业化生产.本文开发了温和的低温共沉淀法合成NVPF材料,该材料首次放电容量为105.6 mAh·g-1,首次效率为90.16%.经过简单的热处理过程,可以有效去除由于液相合成带来的结晶水以及吸...  相似文献   

19.
Spinel Li1+xMn2-xO4 has been studied extensively as a promising cathode material for lithium rechargeable batteries with high energy density due to the following advantages. (1) it is less expensive; (2) it is less toxic; (3) it is easier to prepare than layered LiCoO2 and LiNiO2. The preparation methods have important and remarkable effects on the electrochemical properties of spinel Li1+xMn2-xO4 cathode material. Li1+,Mn2_x04 powders are typically synthesized by solid state reaction which consists of extensively mechanical mixing and intermitted grinding[1,2]. This treatment is detrimental to the quality of the final product because of the resulting inhomogeneity, irregular morphology, larger particle size with broader particle diameter distribution, and poor control of stoichiometry resulted from lithium loss at high temperature for long time. In order to achieve good efficiency of lithium utilization at high current and high reliability of lithium rechargeable batteries, we developed a new synthesis process which was called as in-situ redox precipitation method[3]. By this method, the Li1+xMn2-xO4 cathode material with good homogeneity, uniform morphology and narrow particle-size distribution as well as excellent electrochemical performance can be easily produced at lower temperature and in a shorter processing time. In this paper, our partial findings were reported.  相似文献   

20.
The synthesis of platinum nanoparticle loaded LiCoO2 (Pt-LiCoO2) was carried out successfully by an impregnation method followed by sintering at different temperatures. The catalytic role of Pt-LiCoO2 composite in hydrogen generation during hydrolysis of sodium borohydride (NaBH4) was studied for fuel cell applications. X-ray diffraction (XRD), transmission electron microscopy (TEM), and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) have been used to elucidate the structural and catalytic properties of Pt-LiCoO2. It was found that the 15 wt % of Pt nanoparticles on LiCoO2 sintered at 450 degrees C support showed the maximum efficiency for the catalysis reaction of hydrogen production. X-ray absorption near edge structure (XANES) analysis and extended X-ray absorption fine structure (EXAFS) analysis using a synchrotron radiation source were performed to carry out ex situ measurements in order to understand the mechanism of the catalytic process for the production of hydrogen during the hydrolysis of NaBH4. Co K-edge XANES showed a small percentage of cobalt in the metallic form after hydrogen generation which suggests the reduction of the cobalt during the hydrolysis of NaBH4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号