首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
采用溶胶-凝胶技术 ,制备了不同退火温度下掺 Tb3+的 SiO2玻璃 ,掺 Tb3+的凝胶玻璃在 448,544,585,620 nm显示 Tb3+的 5D4- 7FJ(J=3,4,5,6)的特征发光光谱 .通过不同退火温度下样品的激发光谱、发射光谱、红外光谱、远红外光谱及差热-热重谱研究了掺 Tb3+的硅基材料由凝胶向玻璃转变过程中的结构变化及对 Tb3+发光性能的影响 .结果显示 ,在 50~ 100℃退火温度下 ,凝胶大部分吸附水分子被除去 ,在 150~ 500℃退火温度区 ,是凝胶向玻璃转变的主要结构变化区 ,并且其发光强度也明显增加 ,到 800℃时趋于稳定 .这些现象得出一个结论 ,Tb3+的发光跃迁被 O- H基强烈猝灭而随退火温度的升高而加强 .  相似文献   

2.
溶胶-凝胶法制备掺Eu3+的SiO2玻璃的结构及发光性   总被引:4,自引:2,他引:2  
利用溶胶-凝胶技术制备了掺不同量Eu3+和不同退火温度下的SiO2凝胶和玻璃,通过在不同退火温度下样品的激发光谱、发射光谱、红外光谱和差热-热重曲线,研究了掺Eu3+的SiO2玻璃材料的结构和发光性能。结果显示当Eu3+的掺杂量大于1.86%(质量分数),Eu3+的发光强度趋于稳定,当样品的退火温度大于300℃时,SiO2凝胶玻璃中吸附的水已基本除净,此时显示出Eu3+的特征发射光谱,谱带位置分别是614,596,588,577nm,分别归属于5D0-7F2,5D0-7F1,5D0-7F0跃迁,对应的激发光谱显示6个峰,位置分别是318,362,380,393,412,462nm,说明300~500℃是凝胶向玻璃转变的关键温度,而水对Eu3+的发光有强烈的淬灭作用。  相似文献   

3.
利用溶胶-凝胶技术制备了掺不同量Eu^3 和不同退火温度下的SiO2凝胶和玻璃,通过在不同退火温度下样品的激光发谱,发射光谱,红外光谱和差热-热重曲线,研究了掺Eu3 的SiO2玻璃材料的结构和发光性能,结果显示,当Eu3 的掺杂量大于1.86%(质量分数),Eu^3 的发光强度趋于稳定,当样品的退火温度大于300度时,SiO2凝胶玻璃中吸附的水已基本除净,此时显示出Eu^3 的特征发射光谱,谱带位置分别是614,596,577nm,分别归属于^5Do-7F2,5D0-7F1,^5D0-^7F0跃迁,对应的激光发光谱显示6个峰,位置分别是318,362,380,393,412,462nm,说明300-500度是凝胶向玻璃转变的关键温度,而水对Eu^3 的发光有强烈的淬灭作用。  相似文献   

4.
采用溶胶-凝胶技术制备了掺Eu3+的以SiO2-B2O3和SiO2-B2O3-Na2O为基质的玻璃态发光材料. 通过激发光谱、发射光谱研究了Eu3+的发光性质, 通过红外光谱、 TEM 、 XRT进一步研究了基质结构变化对发光性能的影响. 结果显示 材料经 600 ℃退火处理后, 结构已十分稳定. 在588 nm和613 nm处显示弱的Eu3+的特征发射光谱, 对应于Eu3+的5D0-7Fj(j=1,2)跃迁. 以SiO2-B2O3为基质的玻璃材料的红外光谱显示形成了Si-O-B键. 该结构对Eu3+的发光有严重的淬灭作用, 使Eu3+的发光强度大大减弱. 以SiO2-B2O3-Na2O为基质的玻璃材料显示Eu3+的发光增强, 红外光谱显示不存在Si-O-B键的振动吸收. 可能是Na取代B的位置, 形成了Si-O-Na键. 此结构对Eu3+的发光有一定增加作用.  相似文献   

5.
在实验室中.采用溶胶一凝胶法,在比较低的温度下。合成出Li Gd_(0.958)SiO_4:0.035Eu~(3+),0.007Bi~(3+)发光体。利用红外光谱、X射线粉末衍射谱、热重及差热分析、激发光谱和发光光谱,研究了由凝胶至发光晶体的转变过程,讨论了Eu~(3+)、Bi~(3+)在稀土硅酸盐中的发光行为。  相似文献   

6.
Tb掺杂SiO2-B2O3-NaF玻璃的制备及发光性质   总被引:5,自引:0,他引:5  
使用正硅酸乙酯、硼酸和氟化钠为前驱体,0.10 mol•L-1TbCl3溶液为掺杂剂,通过溶胶-凝胶方法制备了Tb3+掺杂的SiO2-B2O3-NaF玻璃,研究了Tb3+在SiO2-B2O3-NaF体系中的发光性质,结果显示发光体能产生强的绿色发光(544 nm),归属于Tb3+的5D4—7F5电子跃迁.Tb3+含量不同时,除发光强度不同外,其发射光谱基本相同,并且在低掺杂Tb3+样品和低退火温度样品中检测到了来自5D3跃迁产生的峰,其跃迁随Tb3+掺杂浓度的增加和退火温度的升高而发生猝灭,这种现象归因于5D3-5D47F6—7F0和/或5D3—7F07F6—5D4跃迁中发生了交叉弛豫现象.Tb3+在SiO2-B2O3-NaF玻璃中的激发光谱由一个宽峰和一系列窄峰组成,宽峰最大波长位于230 nm,对应于Tb3+的4f 8—4f 75d 1跃迁,一系列窄峰位于300~380 nm处,归属于4f 8跃迁,所有发光材料的XRD和TEM测试显示材料是非晶态的.  相似文献   

7.
硼离子对铕掺杂SiO2干凝胶发光性能的影响   总被引:3,自引:0,他引:3  
采用溶胶-凝胶法制备了Al单掺和B,Al共掺的Eu掺杂SiO2干凝胶。利用荧光光谱、IR,XRD,DSC,TG/DTG等技术研究了硼离子、退火温度对样品发光性质的影响。经500℃以上退火处理用248nm激发的样品,产生Eu^3+离子^5D0→^7FJ的特征发射,^5D0→^7F1的跃迁分裂为两个峰。比较615nm处的发光强度,掺硼酸样品的发光强度是不加硼酸发光强度的3.3倍。这是因为B离子的加入,在材料中形成了Si—O—B键,破坏了网络的对称性,加强了Eu^3+的红光发射。当退火温度上升到850℃用350nm激发时,样品有很强的Eu^2+蓝光发射。Al单掺的发射中心在437nm处,发射半峰宽约为70nm,而B,Al共掺样品的发光中心蓝移到425nm处,单掺样品的蓝光强度几乎是共掺样品强度的2倍。这是由于硼酸的加入改变了基质的网络结构,从而导致单掺和共掺样品发射峰位和强度的改变。  相似文献   

8.
采用原位合成技术, 用溶胶凝胶法制备了稀土离子(Tb3+), β-二酮及协同体共掺的二氧化硅玻璃, 测量了它们发射光谱和红外光谱, 并进行了XRD, SEM和TG-DSC测试. 探讨各不同成分原位合成稀土有机配合物在二氧化硅玻璃中的发光性能及热处理温度对发光性能的影响. 结果表明, 在凝胶玻璃中掺入能级较匹配的β-二酮, 可以使稀土离子的荧光增强; 合适的协同体的引用也能使稀土离子的荧光增强. 这些结果为今后制备荧光较强的含Tb离子的SiO2凝胶玻璃提供了一定的依据.  相似文献   

9.
以柠檬酸为络合剂,采用溶胶-凝胶法成功制备了Al18B4O33:Eu,Tb荧光粉.采用热分析仪、X射线衍射仪和扫描电镜分别对样品进行了热分析、结构和形貌分析,采用荧光光谱仪和亮度计测试样品的激发发射光谱和亮度.结果表明:前驱体先经700℃预烧,然后再于1100℃煅烧3h后,可获得粒度分布均匀、结晶性良好的Al18B4O33:Eu,Tb荧光粉;共掺杂Eu和Tb的Al18B4O33荧光粉可同时发出“三基色”所需要的特征发光;该荧光粉中同时存在Eu2+离子、Tb3+离子和Eu3+离子,在350~ 400 nm之间的紫外区域存在较强的激发峰,可被用于与紫外LED复合合成白光LED;通过研究Eu和Tb的掺杂量对荧光粉发光强度的影响发现,适量调节Eu和Tb的掺杂量可以改变Al18B4O33:Eu,Tb荧光粉的发光颜色和强度.  相似文献   

10.
溶胶-凝胶法制备掺Sm3+的SiO2玻璃的结构及发光性能   总被引:1,自引:0,他引:1  
利用溶胶-凝胶技术制备了掺不同量Sm3+和不同退火温度下的SiO2凝胶和玻璃,通过三维荧光光谱、激发光谱、发射光谱的测试,确定了Sm3+在SiO2凝胶玻璃中的最佳激发波长为360 nm,最强发射波长为610 nm,激发光谱的峰位置在360、393、464 nm处,发射光谱的峰位置在578、591、595、610、732nm处,分别归属于4G5/2-6H5/2、4G5/2-6H7/2、4G5/2-6H11/2跃迁,并证明当掺杂量达到1.15%时,Sm3+的发光最强,当Sm3+的掺杂量超过1.15%时,发生浓度猝灭效应.  相似文献   

11.
采用简单的液相法合成了SiO2/LaF3:Eu3+核壳结构发光粒子, 并对其结构及发光性能进行了表征. XRD分析表明包覆层LaF3:Eu3+为立方晶相结构, 红外光谱表明SiO2颗粒表面有柠檬酸的修饰, 电镜照片表明合成了球形的核-壳结构的复合粒子, 包覆层厚度为10~20 nm, 光谱测试表明核-壳复合粒子与纯的LaF3:Eu3+具有相同的发光性能, 均以589 nm附近的5D0—7F1磁偶极跃迁为最强发射峰, 说明Eu3+在LaF3基质中占据的格位相同.  相似文献   

12.
采用均相沉淀法制备了Ag@SiO2@(Y,RE)(OH)CO3.H2O(RE=Eu,Tb)核壳结构微球,经过700℃焙烧后成功制备出Ag@SiO2@Y2O3:RE3+(RE=Eu,Tb)核壳结构发光材料。XRD谱图表明Ag核具有结晶良好的面心立方结构;SiO2层为无定型;Y2O3层为立方晶系。FTIR谱图表明核壳之间以化学键相结合。TEM照片表明合成了核壳结构的表面光滑的复合微球,分散良好,大小均匀,Ag核的粒径分布为50±20 nm;SiO2层的厚度为20~30 nm;Y2O3:RE3+(RE=Eu,Tb)层厚度约为125 nm。电子衍射图像表明Ag@SiO2@Y2O3:RE3+(RE=Eu,Tb)为多晶结构。UV-Vis光谱表明表面包覆使Ag离子的等离子体共振吸收峰发生了红移。荧光光谱表明Ag@SiO2@Y2O3:Eu3+具有Eu3+的特征红光发射,Ag@SiO2@Y2O3:Tb3+具有Tb3+的特征绿光发射,但是发光强度均比纯的Y2O3:RE3+有所减弱,说明贵金属的引入对稀土Y2O3:RE3+(RE=Eu,Tb)的发光起到了荧光猝灭的作用。  相似文献   

13.
Ce3+和Tb3+掺杂的稀土硼酸盐玻璃的发光性质   总被引:7,自引:0,他引:7  
报道Ce^3+和Tb^3+掺杂的硼酸盐玻璃的合成及该系列玻璃的激发和发射光谱性质。在紫外光激发下,玻璃中的Ce^3+发射蓝紫光,Tb^3+发射有特征的绿光,在Ce^3+和Tb^3+共掺杂的体系中,可观察到Ce^3+强烈敏化Tb^3+发光的现象。分析表明,Ce^3+和Tb^3+之间存在辐射能量传递稿铲无辐射能量传递。  相似文献   

14.
KZnF3∶Ce,Tb的溶剂热合成及光谱性质   总被引:2,自引:1,他引:1  
采用溶剂热法合成了Ce3+,Tb3+单掺和双掺KZnF3发光粉。分析了样品的结构与形貌。结果表明,所合成的样品均为单相,颗粒粒度分布均匀。讨论了它们的光谱特性。研究发现,在KZnF3∶Ce3+激发光谱中激发带劈裂成2个带峰,最大发光中心分别位于263 nm(主峰)和246 nm,而在发射光谱中只观察到1个带状发射峰,最大发射中心位于330 nm。在KZnF3∶Tb3+激发光谱中存在较强的基质激发峰,而在发射光谱中,发现Tb3+的5D4→7FJ(J=6,5,4,3)跃迁。在KZnF3双掺体系中,Tb3+的发光强度随Ce3+的浓度增加而增强,存在Ce3+→Tb3+能量传递,尤其是Tb3+的5D4→7F5跃迁发射显著增强,有望成为一种有发展前途的绿色荧光材料。  相似文献   

15.
采用高温固相法成功制备了KNaCa2(PO4)2:Tb3+绿色荧光粉,并研究了其发光性质。测量了其激发和发射光谱,样品发射峰位于418,440,492,545,586,622 nm,分别对应Tb3+的5 D3→7 F5,5 D3→7 F4,5 D4→7 F6,5 D4→7 F5,5 D4→7 F4,5 D4→7 F3能级跃迁,主发射峰位于545 nm。主激发峰位于350~390 nm之间,属于4f→4f电子跃迁吸收,与InGaN管芯匹配。确定了在KNaCa2(PO4)2基质中Tb3+浓度对其发光强度的影响及其自身浓度猝灭机制。研究了不同电荷补偿剂对KNaCa2(PO4)2:Tb3+材料发光的影响,其中Li+离子改善其发光强度最为明显。  相似文献   

16.
以尿素为燃烧剂,乙二醇为分散剂采用燃烧法制备了Gd3Ga5O12∶Eu3+纳米晶。利用X射线衍射、电镜和荧光光谱对前驱体和热处理后样品的结构、形貌和发光性能进行了表征。XRD结果表明:700℃热处理2 h即可获得立方结构Gd3Ga5O12∶Eu3+纳米晶。根据Scherrer公式估算经700℃和900℃热处理2 h获得的纳米晶的一次性粒径分别为28 nm和42 nm。发射光谱和激发光谱的结果表明:特征发射峰来自于5D0-7FJ跃迁,而来自于Eu3+的5D0→7F1的磁偶极跃迁发射最强;宽激发带主要来自于Eu-O电荷迁移带和Gd3Ga5O12基质吸收。发射强度和激发强度随热处理温度的提高而增强。  相似文献   

17.
在硅磷酸镧中Ce^3+离子对Tb^3+离子的敏化   总被引:1,自引:0,他引:1  
实验表明在La2O3·0.01SiO2·0.95P2O5基质中Ce^3 对Tb^3 有强的敏化作用。254nm紫外光激发下温度对Tb^3 激活的Ce^3 、Tb^3 共激活试样的发射强度的Ce^3 、Tb^3 共激活的试样Tb^3 的^5D4→^7F6:5:4跃迁的发射强度随湿度的变化。计算了Ce^3 到Tb^3 的能量传递效率。初步探讨了Ce对Tb的能量传递机理。  相似文献   

18.
To obtain red luminants, MgO-GeO2 gel glasses and glass ceramics doped with manganese ions were prepared by a sol-gel method and their properties were investigated by measuring X-ray diffraction (XRD), electron spin resonance (ESR), and luminescence and excitation spectra. Under UV irradiation at 254 nm, the gel glasses and glass ceramics showed red luminescence at 620–665 nm, the intensity of which became strong with increasing the heat-treatment temperature. A glass ceramic with the composition 1.0MnO-25MgO-75GeO2 heat treated at 1000°C exhibited the strongest red luminescence at 661 nm. From the results of XRD and ESR, this luminescence is found to be due to the transition from the 4T1g to the 6A1g state of octahedrally coordinated Mn2+ ions located in MgGeO3 polycrystals. The luminescence wavelength of the glass ceramics (∼665 nm) is long compared with Eu3+-containing phosphors (612 nm), therefore the glass ceramics can be expected for red luminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号