首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
用稳态和震荡剪切实验研究了水杨酸钠(NaSal)对50 mmol·L-1阳离子Gemini表面活性剂2-羟基-(三亚甲基-α,ω-双十二烷基三甲基溴化铵和三亚甲基-α,ω-双十二烷基三甲基溴化铵, 简写为12-3(OH)-12和12-3-12)水溶液中形成蠕虫状胶束及其性质的影响. 在无盐状态下, 50 mmol·L-1的12-3(OH)-12或12-3-12在水溶液中仅形成球状或棒状胶束. NaSal可促进上述两体系胶束的生长, 生成蠕虫状胶束. 比较而言, 12- 3(OH)-12对NaSal更敏感, 可以在低盐浓度下生成蠕虫状胶束. 而且与12-3-12体系相比, 12-3(OH)-12生成了更长的蠕虫状胶束. 这些差别在于12-3(OH)-12体系中存在羟基连接链之间的氢键作用, 这增加了12- 3(OH)-12头基的亲水性, 促进了反离子的解离, 增大的胶束表面电荷密度更强烈地结合水杨酸根反离子, 减小了头基间的静电斥力, 反过来又增强了分子间氢键, 致使 12-3(OH)-12胶束迅速生长.  相似文献   

2.
The formation and the properties of wormlike micelles in aqueous solutions of mixed cationic and anionic gemini surfactants, 2-hydroxyl-propanediyl-α,ω-bis(dimethyldodecylammonium bromide) (12-3(OH)-12) and O,O'-bis(sodium 2-dodecylcarboxylate)-p-benzenediol (C(12)?C(12)), have been studied by steady-state and dynamic rheological measurements at 25°C. With the addition of a small amount of C(12)?C(12) into the solution of 12-3(OH)-12, the total surfactant concentration of which was always kept at 80 mmol L(-1), the solution viscosity was strongly enhanced and its maximum was much larger than that of the mixed system of propanediyl-α,ω-bis(dimethyldodecylammonium bromide) (12-3-12) and C(12)?C(12). The results of dynamic rheology measurements showed that 12-3(OH)-12/C(12)?C(12) formed longer wormlike micelles in comparison with 12-3-12/C(12)?C(12). This was attributed to the effect of hydrogen bonding occurring between 12-3(OH)-12 molecules, which was an effective driving force promoting micellar growth. As few C(12)?C(12) participated in the micelles, the electrostatic attraction between the oppositely charged head groups of 12-3(OH)-12 and C(12)?C(12) made the molecules in the aggregates pack more tightly. This reinforced the hydrogen-bonding interactions and greatly promoted the micellar growth.  相似文献   

3.
The interaction of nonionic triblock copolymers of poly(ethyleneoxide) (PEO) and poly(propyleneoxide) (PPO) (PEOnPPOmPEOn) with a series of cationic surface-active ionic liquids in aqueous solutions have been investigated. The cationic surface-active ionic liquids include 1-alkyl-3-methylimidazolium bromide (CnmimBr, n?=?8, 10, 12, 14, 16) and N-alkyl-N-methylpyrrolidinium bromide (CnMPB, n?=?12, 14, 16). For different polymer-surfactant systems, the critical aggregation surfactant concentration (cac), the surfactant concentration to form free micelles (C m), and the saturation concentration of surfactant on the polymer chains (C 2) were determined using isothermal titration microcalorimetry (ITC) and conductivity measurements. The structure of the formed aggregates depended strongly on the hydrophobicity of the surfactant and the ratio of polymer/surfactant concentration. For C8mimBr, there were not any micelle-like surfactant?Cpolymer clusters detected in the solution, and only micelles appeared. For other surfactants, the polymer?Csurfactant aggregates were formed in the solution, which was verified by the appearance of a broad endothermic peak in the ITC thermograms. The intensity of polymer?Csurfactant interaction increased with the hydrophobicity of the surfactants and the polymers but was not affected by the surfactant headgroups.  相似文献   

4.
Self-assembled Gemini surfactant film-mediated dispersion stability   总被引:1,自引:0,他引:1  
The force-distance curves of 12-2-12 and 12-4-12 Gemini quaternary ammonium bromide surfactants on mica and silica surfaces obtained by atomic force microscopy (AFM) were correlated with the structure of the adsorption layer. The critical micelle concentration was measured in the presence or absence of electrolyte. The electrolyte effect (the decrease of CMC) is significantly more pronounced for Gemini than for single-chain surfactants. The maximum compressive force, F(max), of the adsorbed surfactant aggregates was determined. On the mica surface in the presence of 0.1 M NaCl, the Gemini micelles and strong repulsive barrier appear at surfactant concentrations 0.02-0.05 mM, which is significantly lower than that for the single C(12)TAB (5-10 mM). This difference between single and Gemini surfactants can be explained by a stronger adsorption energy of Gemini surfactants. The low concentration of Gemini at which this surfactant forms the strong micellar layer on the solid/solution interface proves that Gemini aggregates (micelles) potentially act as dispersing agent in processes such as chemical mechanical polishing or collector in flotation. The AFM force-distance results obtained for the Gemini surfactants were used along with turbidity measurements to determine how adsorption of Gemini surfactants affects dispersion stability. It has been shown that Gemini (or two-chain) surfactants are more effective dispersing agents, and that in the presence of electrolyte, the silica dispersion stability at pH 4.0 can also be achieved at very low surfactant concentrations ( approximately 0.02 mM).  相似文献   

5.
The consequences of including amide bonds into the structure of short-chain nonionic surfactants have been studied. Of particular interest were the possible effects of the hydrogen bonding ability of the amide group on the micellar shape. The aggregate structure and hydration of two different amide-containing surfactants, C7H15CO-NH-(CH2CH2O)4H and C7H15CO-(NH-C3H6-CO)2N(CH3)2, were investigated using NMR diffusometry (pulsed gradient spin echo NMR) as the main technique. Data from experiments on the surfactants, the hydrophobic probe molecule hexamethyldisilane (HMDS), and water were interpreted to gain information about the solution structures, and the results were compared to those on a previously studied alcohol ethoxylate surfactant of similar size, C8E4. Both of the amide-containing surfactants form small micelles within the whole investigated concentration range. At the critical micelle concentration, the aggregates are most probably spherical, and with increasing surfactant concentration there are indications of either a minor aggregate growth or agglomeration of the micelles. In addition, it was found that the presence of amide groups in the surfactant inhibits the intermicellar transport of HMDS, which occurs in the C8E4 system. From measurements on water diffusion in the three surfactant systems, it could be concluded that the surfactant hydration is higher when amide bonds are present.  相似文献   

6.
In this paper we report the experimental observations of the effects of various surfactants on the oscillations of the ferroin-catalyzed Belousov-Zhabotinsky (BZ) reaction. The oscillations are followed by observing the change in absorbance at 510 nm due to ferroin in a well-stirred closed BZ reacting system. We have used sodium dodecyl sulfate (SDS) as the anionic surfactant, cetyl trimethylammonium bromide (CTAB) as the cationic surfactant, Triton X-100 as the neutral surfactant, and 3-[(3-cholamidopropyl)dimethylammonio)]-1-propanesulfonate (CHAPS) as the zwitterionic surfactant. In general, we observed that there is a change in the oscillation behavior in the presence of each of these surfactants above their critical micellar concentrations. For different surfactants, the time-dependent evolution of the oscillations is found to be characteristic of the surfactant. The results of our study suggest that the evolution of oscillations is most regular in the presence of micelles of SDS.  相似文献   

7.
The micellar effect of surfactants of various types on the rate of the reaction between methyl violet and hydroxide ion is studied. The absorption spectra show that the cation of methyl violet is bound by micelles of all types at proper concentrations of surfactants. The observed rate constant in micellar systems containing nonionic Brij-35, zwitterionic 3-(dimethyldodecylammonio)-propanesulfonate, cationic cetyltrimethylammonium bromide and hydroxide surfactants is higher, whereas in solutions of the anionic surfactant sodium dodecylsulfate is lower than that one in the surfactant-free system. Piszkiewicz's, Berezin's, and pseudophase ion-exchange models of the kinetic micellar effect are used for the treatment of the dependences of the above-mentioned constants on the surfactant concentration. The values of the corresponding kinetic parameters are compared and discussed. The influence of nonionic, zwitterionic, and anionic micelles on the reaction rate is discussed on the basis of medium and concentration kinetic effects. The character of the cationic micelles effect is somewhat paradoxical. Although the observed pseudo–first-order reaction rate constant substantially increases in the presence of such micelles, the second order-rate constant in these micelles is lower than the corresponding value in surfactant-free aqueous solution. As a possible explanation, the decrease in the reactivity of the HO ions is proposed, owing to their electrostatic association with the cationic headgroups (“diverting effect”).  相似文献   

8.
Solubilization and interaction of azo-dye light yellow (X6G) at/with cationic surfactants cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC) was investigated spectrophotometricaly. The effect of cationic micelles on solubilization of anionic azo dye in aqueous micellar solutions of cationic surfactants was studied at pH 7 and 25 degrees C. The binding of dye to micelles implied a bathochromic shift in dye absorption spectra that indicates dye-surfactant interaction. The results showed that the solubility of dye increased with increasing surfactant concentration, as a consequence of the association between the dye and the micelles. The binding constants, K(b), were obtained from experimental absorption spectra. By using pseudo-phase model, the partition coefficients between the bulk water and surfactant micelles, K(x), were calculated. Gibbs energies of binding and distribution of dye between the bulk water and surfactant micelles were estimated. The results show favorable solubilization of dye in CTAB micelles.  相似文献   

9.
The rate of decarboxylation of 6-nitrobenzisoxazole-3-carboxylate, NBOC, was determined in micelles of N-hexadecyl-N,N,N-trimethylammonium bromide or chloride (CTAB or CTAC), N-hexadecyl-N,N-dimethyl-3-ammonium-1-propanesulfonate (HPS), N-dodecyl-N,N-dimethyl-3-ammonium-1-propanesulfonate (DPS), N-dodecyl-N,N,N-trimethylammonium bromide (DTAB), hexadecylphosphocholine (HPC), and their mixtures. Quantitative analysis of the effect on micelles on the velocity of NBOC decarboxylation allowed the estimation of the rate constants in the micellar pseudophase, k(m), for the pure surfactants and their mixtures. The extent of micellar catalysis for NBOC decarboxylation, expressed as the ratio k(m)/k(w), where k(w) is the rate constant in water, varied from 240 for HPS to 62 for HPC. With HPS or DPS, k(m) decreased linearly with CTAB(C) mole fraction, suggesting ideal mixing. With HPC, k(m) increased to a maximum at a CTAB(C) mole fraction of ca. 0.5 and then decreased at higher CTAB(C). Addition of CTAB(C) to HPC, where the negative charge of the surfactant is close to the hydrophobic core, produces tight ion pairs at the interface and, consequently, decreases interfacial water contents. Interfacial dehydration at the surface in equimolar HPC/CTAB(C) mixtures, and interfacial solubilization site of the substrate, can explain the observed catalytic synergy, since the rate of NBOC decarboxylation increases markedly with the decrease in hydrogen bonding to the carboxylate group.  相似文献   

10.
The alkaline hydrolysis of curcumin was studied in three types of micelles composed of the cationic surfactants cetyl trimethylammonium bromide (CTAB) and dodecyl trimethylammonium bromide (DTAB) and the anionic surfactant sodium dodecyl sulfate (SDS). At pH 13, curcumin undergoes rapid degradation by alkaline hydrolysis in the SDS micellar solution. In contrast, alkaline hydrolysis of curcumin is greatly suppressed in the presence of either CTAB or DTAB micelles, with a yield of suppression close to 90%. The results from fluorescence spectroscopic studies reveal that while curcumin remains encapsulated in CTAB and DTAB micelles at pH 13, curcumin is dissociated from the SDS micelles to the aqueous phase at this pH. The absence of encapsulation and stabilization in the SDS micellar solution results in rapid hydrolysis of curcumin.  相似文献   

11.
The energetics of micelle formation of three single-chain cationic surfactants bearing single (h = 1), double (h = 2), and triple (h = 3) trimethylammonium [(+)N(CH(3))(3)] headgroups have been investigated by microcalorimetry. The results were compared with the microcalorimetric data obtained from well-known cationic surfactant, cetyl trimethylammonium bromide (CTAB), bearing a single chain and single headgroup. The critical micellar concentrations (cmc's) and the degrees of counterion dissociation (alpha) of micelles of these surfactants were also determined by conductometry. The cmc and the alpha values increased with the increase in the number of headgroups of the surfactant. The relationship between the cmc of the surfactant in solution and its free energy of micellization (DeltaG(m)) was derived for each surfactant. Exothermic enthalpies of micellization (DeltaH(m)) and positive entropies of micellization (DeltaS(m)) were observed for all the surfactants. Negative DeltaH(m) values increased from CTAB to h = 1 to h = 2 and decreased for h = 3 whereas DeltaS(m) values decreased with increase in the number of headgroups. The DeltaG(m) values progressively became less negative with the increase in the number of headgroups. This implies that micelle formation becomes progressively less favorable as more headgroups are incorporated in the surfactant. From the steady-state fluorescence measurements using pyrene as a probe, the micropolarities sensed by the probe inside various micelles were determined. These studies suggest that the micelles are more hydrated with multiheaded surfactants and the micropolarity of micelles increases with the increase in the number of headgroups.  相似文献   

12.
The interactions in water between short amphiphilic macromomolecules, known as amphipols, and three neutral surfactants (detergents), dodecylmaltoside (DM), n-octylthioglucoside (OTG), and n-octyltetraethyleneoxide (C8E4), have been assessed by static and dynamic light-scattering (SLS and DLS), capillary electrophoresis (CE), and isothermal titration calorimetry (ITC). The amphipols selected are random copolymers of the hydrophobic n-octylacrylamide (25-30 mol %), a charged hydrophilic monomer, either acrylic acid ( approximately 35 mol %) or a phosphorylcholine-modified acrylamide (40-70 mol %), and, optionally, N-isopropylacrylamide (30-40 mol %). In water, the copolymers form micelles of small size (hydrodynamic radius: approximately 5 nm). Neutral surfactants, below their critical micellar concentration (cmc), form mixed micelles with the amphipols irrespective of the chemical structure of the detergent or the polymer. The fraction of detergent in the surfactant/polymer complexes increases significantly (cooperatively) as the surfactant concentration nears the cmc. The ITC data, together with data gathered by CE, were fitted via a regular mixing model, which allowed us to predict the detergent concentration in equilibrium with complexes and the heat evolved upon transfer of detergent from water into a mixed surfactant/polymer complex. The enthalpy of transfer was found to be almost equal to the enthalpy of micellization, and the regular mixing model points to a near-ideal mixing behavior for all systems. Amphipols are promising tools in biochemistry where they are used, together with neutral surfactants, for the stabilization and handling of proteins. This study provides guidelines for the optimization of current protein purification protocols and for the formulations of surfactant/polymer systems used in pharmaceutics, cosmetics, and foodstuffs.  相似文献   

13.
The reaction methyl naphthalene-2-sulfonate + Br(-) was investigated in several alkanediyl-α-ω-bis(dodecyldimethylammonium) bromide, 12-s-12,2Br(-) (with s = 2, 3, 4, 5, 6, 8, 10, 12), micellar solutions in the absence and in the presence of various additives. The additives were 1,2-propylene glycol, which remains in the bulk phase, N-decyl N-methylglucamide, MEGA10, which forms mixed micelles with the dimeric surfactants, and 1-butanol, which distributes between the aqueous and micellar phases. Information about the micellar reaction media was obtained by using conductivity and fluorescence measurements. In all cases, with the exception of water-1,2-prop 12-5-12,2Br(-) micellar solutions, with 30% weight percentage of the organic solvent, a sphere-to-rod transition takes place upon increasing surfactant concentration. In order to quantitatively explain the experimental data within the whole surfactant concentration range, a kinetic equation based on the pseudophase kinetic model was considered, together with the decrease in the micellar ionization degree accompanying micellar growth. However, theoretical predictions did not agree with the experimental kinetic data for surfactant concentrations above the morphological transition. An empirical kinetic equation was proposed in order to explain the data. It contains a parameter b which is assumed to account for the medium micellar kinetic effects caused by the morphological transition. The use of this empirical equation permits the quantitative rationalization of the kinetic micellar effects in the whole surfactant concentration range.  相似文献   

14.
两性离子甜菜碱表面活性剂(SB3-12)胶束具有较好的生物相容性,由于相反电荷的极性头之间具有静电中和作用,胶束表面具有小的负电荷密度。当加入阴离子的十二烷基硫酸钠(SDS)以后,负离子SD-与SB3-12胶束极性区内层季铵正电荷的静电中和作用,能连续地调节胶束表面磺酸基的负电荷密度,这有利于对药物分子的选择性增溶和调节在生理条件下的药物的输送。等温滴定量热(ITC)研究发现SB3-12和SDS有强的协同效应,混合临界胶束浓度(CMC)和胶束化焓明显降低,并得到两者协同效应的弱静电作用机理。当模型药物分子芦丁(Rutin)与SB3-12/SDS混合胶束作用时,芦丁7位羟基的氢解离后的阴离子与SDS共同作用于SB3-12形成混合胶束。UV-Vis吸收光谱和~1H NMR谱研究发现,在SB3-12胶束中,芦丁分子的A环位于季铵阳离子附近,B环位于两个相反电荷之间的弱极性区域。在SDS胶束中,B环位于栅栏层,而A环和二糖暴露于水相侧。在混合胶束中,随着SDS摩尔分数增加,对A环的静电吸引变弱。离子表面活性剂对两性离子表面活性剂胶束表面电荷密度的调节作用,本质上是对胶束极性区域的物理及化学性质的微调,进而实现对药物的可控增溶。  相似文献   

15.
Linear solvation energy relationships and free energy of transfer data were used to evaluate the influence of the surfactant counter-ion on selectivity in micellar electrokinetic chromatography. It was determined that selectivity differences are dependent on the valency of the counter-ion but not the type of counter-ion. Monovalent surfactants, sodium dodecyl sulfate (SDS) and lithium dodecyl sulfate, have nearly identical selectivity behavior. The divalent surfactants, magnesium didodecyl sulfate and copper didodecyl sulfate also show very similar behavior. However, when the divalent counter-ion species is compared to SDS under similar conditions, significant differences are observed. Most notably, the utilization of divalent counter-ion species of dodecyl sulfate surfactants causes the micelles to become more hydrophobic and a weaker hydrogen bond donating pseudo-stationary phases. It is believed that the divalent counter-ions reduce the electrostatic repulsion between the surfactant head groups and therefore, increase the chain packing of the monomers in the micelle aggregates. This reduces the degree of hydration of the micellar palisade layer leading to a decreased ability of the micelle to participate in polar/polarizable and hydrogen bonding interactions with solute molecules.  相似文献   

16.
The work reported herein deals with the aqueous behavior of hydrocarbon and/or fluorocarbon ionic and nonionic surfactants mixtures. These mixtures were studied using potentiometric techniques in NaBr (0.1 mol L-1) aqueous solution as well as in pure water. Mixed micelles were formed from a cationic surfactant (dodecyl or tetradecyltrimethylammonium bromide respectively called DTABr or TTABr) and neutral lactobionamide surfactants bearing a hydrogenated dodecyl chain (H12Lac) or a fluorinated chain (CF3-(CF2)5-(CH2)2- or CF3-(CF2)7-(CH2)2-). We showed that concentrations of ionic and nonionic surfactants in the monomeric form as well as the composition of the mixed micelles can be specified thanks to a potentiometric technique. The complete characterization does not request any model of micellization a priori. The activities of the micellar phase constituents, as well as the free enthalpies of mixing, were calculated. The subsequent interpretation only relies on the experimental characterization. Comparison of the behaviors of the various systems with a model derived from the regular solution theory reveals the predominant part of electrostatic interactions in the micellization phenomenon. It also appears that the energy of interaction between hydrogenated and fluorinated chains is unfavorable to mixing and is of much lower magnitude than the electric charges interactions.  相似文献   

17.
We have compared micelles, reverse micelles, and reverse micelles encapsulating myoglobin using electrospray mass spectrometry. To enable a direct comparison, the same surfactant (cetyltrimethylammonium bromide (CTAB)) was used in each case and micelle formation was controlled by manipulating the aqueous and organic phases. Tandem mass spectra of the resulting micelle preparations reveal differences in the ions that dissociate: those that dissociate from regular micelles have undergone >90% exchange of bromide ions from the headgroup with acetate ions from bulk solvent. By contrast, for reverse micelles, ions are detected without exchange of bromide ions from the headgroup, consistent with their protection in the core of the micellar structure. Tandem mass spectra of micelles and reverse micelles reveal polydispersed assemblies containing several hundred CTAB molecules, indicating the coalescence of the micellar systems to form large assemblies. For reverse micelles incorporating myoglobin, spectra are consistent with one holo myogolobin molecule in association with approximately 270 CTAB molecules. Overall, therefore, our results show that the solution-phase orientation of surfactants is preserved during electrospray and are consistent with interactions being maintained between surfactants and an encapsulated protein.  相似文献   

18.
We have investigated the formation of threadlike micelles consisting of anionic surfactants and certain additives in aqueous solution. Threadlike micelles long enough to be entangled with each other were formed in a clear aqueous solution of two anionic surfactants, sodium hexadecyl sulfate and sodium tetradecyl sulfate. These solutions also contained pentylammonium bromides or p-toluidine halides and exhibited remarkable viscoelasticity. Because the molar ratio of surfactants to cationic additives in these micelles seemed close to unity, they formed 1:1 stoichiometric complexes between surfactant anions and additive cations, as previously found in systems of cationic surfactants such as hexadecyltrimethylammonium bromide and sodium salicylate. The viscoelastic behavior of these anionic threadlike micellar systems was adequately described by a simple Maxwell element with a single relaxation time and strength, as in many similar cationic systems.  相似文献   

19.
Aqueous mixed micellar solutions of perfluoropolyether carboxylic salts with ammonium counterions have been studied by small-angle neutron scattering. Two surfactants differing in the tail length were mixed in proportions n2/n3 = 60/40 w/w, where n2 and n3 are the surfactants with two and three perfluoroisopropoxy units in the tail, respectively. The tails are chlorine-terminated. The mixed micellar solutions, in the concentration range 0.1-0.2 M and thermal interval 20-40 degrees C, show structural characteristics of the interfacial shell that are very similar to ammonium n2 micellar solutions previously investigated; thus, the physics of the interfacial region is dominated by the polar head and counterion. The shape and dimensions of the micelles are influenced by the presence of the n3 surfactant, whose chain length in the micelle is 2 A longer than that of the n2 surfactant. The n3 surfactant favors the ellipsoidal shape in the concentration range 0.1-0.2 M with a 1/2 ionization degree of n2 micelles. The very low surface charge of the mixed micelles is attributed to the increase in hydrophobic interactions between the surfactant tails, due to the longer n3 surfactant molecules in micelles. The closer packing of the tails decreases the micellar curvature and the repulsions between the polar heads, by surface charge neutralization of counterions migrating from the Gouy-Chapman diffuse layer, leading to micellar growth in ellipsoids with greater axial ratios.  相似文献   

20.
The micelle formation process for a typical anionic surfactant, sodium dodecyl sulfate, and a typical cationic surfactant, dodecyltrimethylammonium bromide, has been investigated in a series of mixed solvents consisting of different concentrations of isomeric hexanediols (1,2-hexanediol and 1,6-hexanediol) in water. The critical micelle concentrations and the degrees of counterion dissociation of the mixed micelles were obtained from conductance experiments. Luminescence probing experiments have been used to determine the concentration of micelles in solution and, hence, the micellar aggregation numbers of the surfactants in the mixed solvent systems. The alcohol aggregation numbers were determined by combining the partition coefficients (obtained using NMR paramagnetic relaxation enhancement experiments) with the micellar concentrations from the luminescence probing experiments. All these results are interpreted in terms of the difference in the interaction of the isomeric hexanediols with the surfactant as a function of the position of the hydroxyl groups on the six-carbon chain of the alcohol. Received: 28 June 2000/Accepted: 5 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号