首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The base-catalyzed reaction between isatins and N-Boc-3-pyrrolin-2-one yields Morita–Baylis–Hillman (MBH) adducts instead of the expected aldol products in good to high yields (up to 97%). Various organic and inorganic bases are efficient catalysts for this reaction. Our study excluded the Morita–Baylis–Hillman mechanism for the formation of the MBH-type products. The MBH products are most likely formed as a result of the subsequent isomerization of the original aldol products between isatins and N-Boc-3-pyrrolin-2-one.  相似文献   

2.
On interaction of alicyclic 1,5-diketones and the products of their intramolecular aldol condensation with 2- and 4-nitroanilines and 2,4-dinitroaniline reduction occurs of the nitro group by the intermediately formed 1,4-dihydropyridine derivatives. The reaction products are N-nitrophenyl- and N-aminophenylpyridinium salts and also N,N-phenylenebispyridinium salts.  相似文献   

3.
A novel copper‐catalyzed one‐pot cross‐coupling of β‐ketoacids with in situ generated trifluorodiazoethane has been developed. This reaction provides a direct and efficient method, in which one C?C bond and one C?O bond were formed in a carbenoid center with concomitant denitrogenation–dehydrogenation–decarboxylation, to afford trifluoromethylated aldol products. In several preliminary experiments, good to high enantioselectivities were also obtained.  相似文献   

4.
A catalytic regio- and enantioselective aldol reaction of various unsymmetrical methyl ketones with para-nitrobenzaldehyde has been developed using aldolase antibodies as the catalysts. It has been found that the sense and level of regioselectivity for the reactions catalysed by antibody 38C2 and 33F12 are highly dependent on the structure of both the donor and the acceptor but in contrast, antibodies 84G3 and 93F3 catalyse the exclusive formation of the linear regioisomer independent of the structure of the reactants examined. The level of enantiocontrol is very high for most reactions. Both linear aldol enantiomers could be accessed through aldol or retro-aldol reactions using the same antibody. Theoretical studies on regioisomeric α- and β-heteroatom substituted enamines derived from unsymmetrical ketones suggest that most of the linear aldol products formed in the presence of antibodies 84G3 and 93F3 must be formed from intermediate enamines which are not the thermodynamically most favourable.  相似文献   

5.
The partial reduction of N-Boc pyrroles has been explored giving stereoselective routes to disubstituted pyrrolines in good yields and with excellent diastereoselectivities. A novel methodology has been developed to carry out reductive aldol reactions on 2-substituted N-Boc pyrroles; use of aldehydes under reductive aldol conditions gave the anti aldol product in good selectivity. This chemistry was used as the key transformation in a synthesis of omuralide, which was achieved in 13 steps and 14% overall yield. We also report a methodology for selectively forming either cis or trans 2,5-disubstituted pyrrolines via a partial reduction of an electron-deficient N-Boc pyrrole. The trans pyrroline formed using this route was utilized in the syntheses of the polyhydroxylated pyrrolizidine natural products hyacinthacine A1 and 1-epiaustraline. Further investigation has led to the development of routes to enantiopure substituted pyrroline compounds. This has been achieved via a chiral protonation approach using easily accessible chiral acids, such as ephedrine and oxazolidinones, to quench enolates formed during the partial reduction process. Alternatively, enzymatic desymmetrization of symmetrical diol compounds formed from the partial reduction products of substituted pyrroles is also reported. This leads to formation of both enantiomers of 2,2- and 2,5-disubstituted N-Boc pyrrolines in excellent ee and yields.  相似文献   

6.
The dominated approaches for asymmetric aldol reactions have primarily focused on the aldol carbon–carbon bond‐forming events. Here we postulate and develop a new catalytic strategy that seeks to modulate the reaction thermodynamics and control the product enantioselectivities via post‐aldol processes. Specifically, an NHC catalyst is used to activate a masked enolate substrate (vinyl carbonate) to promote the aldol reaction in a non‐enantioselective manner. This reversible aldol event is subsequently followed by an enantioselective acylative kinetic resolution that is mediated by the same (chiral) NHC catalyst without introducing any additional substance. This post‐aldol process takes care of the enantioselectivity issues and drives the otherwise reversible aldol reaction toward a complete conversion. The acylated aldol products bearing quaternary/tetrasubstituted carbon stereogenic centers are formed in good yields and high optical purities.  相似文献   

7.
The reaction of cross-conjugated dienolate anions derived from substituted cyclohexenones with methyl acrylate and vinyl ketones has been studied. Bicyclo[2.2.2]octan-2-ones are formed by a sequential Michael mechanism; however, the reactions of vinyl ketones must be conducted under amine-free conditions. Unexpecedly, the conjugate base from 2,3-dimethylcyclohex-2-enone gives only a single Michael adduct with vinyl ketones, and if forced to react further undergoes an intramolecular aldol condensation. An alternative Diels-Alder approach to the bicyclo[2.2.2]octanone products is shown to be effective.  相似文献   

8.
A variety of esters derived from commercially available norephedrine were used in diastereoselective anti-aldol reactions. The aldol reaction of designed 2-(N-2-methylbenzyl-N-2,4,6-trimethylbenzyl)amino-1-phenylpropanol esters 4a-d with aldehydes furnished anti-2-alkyl-3-hydroxycarboxylic acid esters in excellent diastereomeric ratios (>98:2) when LDA-Cp2ZrCl2 (0.3 equiv) was used for enolization, followed by transmetalation into the zirconium enolate for aldolization. The novel auxiliary 3 for the anti-aldol reaction does not exhibit the ordinary basicity of tertiary amines; 3 can be extracted from acidic media with organic solvents. Its use is, therefore, very advantageous not only for extraction of the aldol products from the acidic water solutions, but also for recovering the chiral auxiliary 3 after the reductive cleavage. Treatment of aldol or 3-protected aldol products with DIBAL-H or LiAlH4 affords the versatile synthons, 2-alkyl-propane-1,3-diols or those 3-protected diols in >98% ee's together with 3 in nearly quantitative recovery.  相似文献   

9.
在相转移催化剂十六烷基三甲基溴化铵的作用下,乙酰呋喃和苯甲醛经羟醛缩合,氧化反应和肟化反应合成了2-甲氧亚胺基-2-呋喃乙酸(3),3步反应的收率分别为98.4%,61.4%和56.5%,总收率72.1%。3的结构经1HNMR,IR和元素分析表征。  相似文献   

10.
Peptides and especially prolinamides have been identified as excellent organocatalysts for the aldol reaction. The combination of prolinamides with derivatives bearing the 2-pyrrolidinone scaffold, deriving from pyroglutamic acid, led to the identification of novel organocatalysts for the intermolecular asymmetric aldol reaction. The new hybrids were tested both in organic and aqueous media. Among the compounds tested, 22 afforded the best results in petroleum ether, while 25 afforded the products in brine in high yields and selectivities. Then, various ketones and aldehydes were utilized and the products of the aldol reaction were obtained in high yields (up to 100%) with excellent diastereo- (up to 97:3 dr) and enantioselectivities (up to 99% ee).  相似文献   

11.
An aqueous medium containing catalytic amounts of a tertiary amine was employed to direct the chemoselectivity of the reaction of aldehydes with 1a. With DBU, 2 was formed at room temperature as a rare exemplary of Baylis-Hillman reactions in heterocyclic enones. DABCO alternated the pathway toward an aldol reaction to form syn/anti mixtures of 3 with the syn isomers being the major products. With Et(3)N, aldol condensation dominated.  相似文献   

12.
The Kobayashi aldol reaction has become a prominent transformation in polyketide syntheses. This methodology takes advantage of the directing effects of the Evans auxiliary and allows the stereoselective incorporation of a four carbon segment with two additional methyl branches establishing an anti-relationship between the two newly formed chiral centers. So far this transformation was restricted to anti-aldol products. We present here a modified protocol that provides the corresponding aldol product with high syn-selectivity.  相似文献   

13.
10-(o-Hydroxy- and aminophenyl)decahydroacridmes, which are formed from 1,5-diketones and the products of their intramolecular aldol concentration with o-aminophenol and o-phenylenediamine, are cyclized reversibly to give five-ring structures.See [1] for communication XII.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 235–238, February, 1975.  相似文献   

14.
An organocatalyst prepared from (2R,3R)-diethyl 2-amino-3-hydroxysuccinate and L-proline exhibited high regio- and enantioselectivities for the direct aldol reactions of hydroxyacetone and fluoroacetone with aldehydes in aqueous media. It was found that water could be used to control the regioselectivity. The presence of 20-30 mol% of the catalyst afforded the direct aldol reactions of a wide range of aldehydes with hydroxyacetone to give the otherwise disfavored products with excellent enantioselectivities, ranging from 91 to 99% ee, and high regioselectivities. Aldolizations of fluoroacetone with aldehydes mediated by 30 mol% of the organocatalyst in aqueous media preferentially occurred at the methyl group, yielding products with high enantioselectivities (up to 91% ee); however, these additions took place dominantly at the fluoromethyl group in THF. Optically active 3,5-disubstituted tetrahydrofurans and (2S,4R)-dihydroxy-4-biphenylbutyric acid were prepared by starting from the aldol reaction of hydroxyacetone. Theoretical studies on the role of water in controlling the regioselectivity revealed that the hydrogen bonds formed between the amide oxygen of proline amide, the hydroxy of hydroxyacetone, and water are responsible for the regioselectivity by microsolvation with explicit one water molecule as a hydrogen-bond donor and/or an acceptor.  相似文献   

15.
The asymmetric aldol reaction of 1,2-diketones, masked as nonracemic 2-acyl dithiane oxides, with lithium enolates derived from several esters and lactones, proceeds with a high degree of stereocontrol at both carbonyl and enolate prochiral centers, the stereocontrol mainly determined by the configuration of the sulfoxide sulfur atom. The sense of induced stereochemistry observed for ester enolates is different from that seen for lactone enolates. Hydrolysis of the dithiane oxide units of the major diastereoisomerically pure aldol products affords enantiomerically pure tertiary alpha-substituted beta-hydroxy-gamma-ketoesters.  相似文献   

16.
The direct aldol reaction between a protected dihydroxyacetone derivative and 4-nitrobenzaldehyde catalyzed by chiral Zn2+ complexes of 1-(n-carboxylalkyl)-7-aminoacyl-1,4,7,10-tetraazacyclododecane is reported. New Zn2+ complexes containing l-histidine and carboxylalkyl chains that mimic a class II aldolase, carboxypeptidase A and a serine protease were designed and synthesized. Syn-aldol products were mainly formed by an aldol reaction of acetonide-protected dihydroxyacetone with benzaldehydes and other benzaldehydes in N-methylpyrrolidone (NMP)/alcohol (MeOH, EtOH or 2-PrOH) in good yields with a high degree of diastereo- and enantioselectivity (56%~quant., 57~>99% ee). Mechanistic aspect based on ESI-HRMS, elemental analysis and pH titrations of model ligands is also discussed.  相似文献   

17.
The potential of L-fuculose-1-phosphate aldolase (FucA) as a catalyst for the asymmetric aldol addition of dihydroxyacetone phosphate (DHAP) to N-protected amino aldehydes has been investigated. First, the reaction was studied in both emulsion systems and conventional dimethylformamide (DMF)/H2O (1:4 v/v) mixtures. At 100 mM DHAP, compared with the reactions in the DMF/H2O (1:4) mixture, the use of emulsion systems led to two- to three-fold improvements in the conversions of the FucA-catalyzed reactions. The N-protected aminopolyols thus obtained were converted to iminocyclitols by reductive amination with Pd/C. This reaction was highly diastereoselective with the exception of the reaction of the aldol adduct formed from (S)-N-Cbz-alaninal, which gave a 55:45 mixture of both epimers. From the stereochemical analysis of the resulting iminocyclitols, it was concluded that the stereoselectivity of the FucA-catalyzed reaction depended upon the structure of the N-Cbz-amino aldehyde acceptor. Whereas the enzymatic aldol reaction with both enantiomers of N-Cbz-alaninal exclusively gave the expected 3R,4R configuration, the stereochemistry at the C-4 position of the major aldol adducts produced in the reactions with N-Cbz-glycinal and N-Cbz-3-aminopropanal was inverted to the 3R,4S configuration. The study of the FucA-catalyzed addition of DHAP to phenylacetaldehyde and benzyloxyacetaldehyde revealed that the 4R product was kinetically favored, but rapidly disappeared in favor of the 4S diastereoisomer. Computational models were generated for the situations before and after C-C bond formation in the active site of FucA. Moreover, the lowest-energy conformations of each pair of the resulting epimeric adducts were determined. The data show that the products with a 3R,4S configuration were thermodynamically more stable and, therefore, the major products formed, in agreement with the experimental results.  相似文献   

18.
In the presence of phenylsilane and 5 mol % cobalt(II) bis(2,2,6,6-tetramethylheptane-3,5-dionate), aryl-substituted monoenone monoaldehydes and bis(enones) undergo reductive cyclization to afford syn-aldol and anti-Michael products, respectively. For both aldol and Michael cycloreductions, five- and six-membered ring formation occurs in good yield with high levels of diastereoselectivity. Cycloreduction of monoenone monoaldehyde 1a in the presence of d(3)-phenylsilane reveals incorporation of a single deuterium at the enone beta-position as an equimolar mixture of epimers, inferring rapid isomerization of the kinetically formed cobalt enolate prior to cyclization. The deuterated product was characterized by single-crystal neutron diffraction analysis. For bis(enone) substrates, modulation of the silane source enables partitioning of the competitive Michael cycloreduction and [2 + 2] cycloaddition manifolds. A study of para-substituted acetophenone-derived bis(enones) reveals that substrate electronic features also direct partitioning of cycloreduction and cycloaddition manifolds. Further mechanistic insight is obtained through examination of the effects of enone geometry on product stereochemistry and electrochemical studies involving cathodic reduction of bis(enone) substrates. The collective experiments reveal competitive enone reduction pathways. Enone hydrometalation produces metallo-enolates en route to aldol and Michael cycloreduction products, that is, products derived from coupling at the alpha-position of the enone. Electron-transfer-mediated enone reduction produces metallo-oxy-pi-allyls en route to [2 + 2] cycloadducts and, under Ni catalysis, homoaldol cycloreduction products, that is, products derived from coupling at the beta-position of the enone. The convergent outcome of the metal-catalyzed and electrochemically induced transformations suggests the proposed oxy-pi-allyl intermediates embody character consistent with the mesomeric metal-complexed anion radicals.  相似文献   

19.
The heterogeneous system TBD/Al(2)O(3) is an efficient catalyst for the intermolecular aldol reaction between ketones and aromatic aldehydes. This system operates with low catalysts loading (10%), in water or organic solvents, and with short reaction times. The desired aldol products are rendered cleanly. Experiments confirmed that this aldol protocol is reversible, and allowed for the preparation of dynamic combinatorial libraries (DCLs) of interconverting aldols. Analysis of these DCLs showed up how properties such as diastereoselectivity can emerge unpredictably from the library when it is considered as a whole.  相似文献   

20.
Organocatalytic systems made up of six primary amine organocatalysts, derived from natural primary amino acids, in combination with 2,4-dinitrophenol (DNP) have proven to be efficient in the presence of brine without further addition of organic solvents. The system formed by 1f and DNP was the most efficient one; it can catalyze the direct aldol reaction with a broad range of ketones and aromatic aldehydes, giving the corresponding aldol products in high yields with up to nearly perfect diastereo- and enantioselectivities (up to 99/1 syn/anti, >99% ee).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号