首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexation reaction of dibenzopyridino-18-crown-6 (DBPY 18C6) with Co2+, Cu2+, Zn2+, Pb2+, Cd2+, Hg2+, and Ag+ have been studied in DMSO at 25°C by the spectrophotometric method. Murexide was used as a competitive colored ligand. The stoichiometry of metal ion-murexide and metal ions with DBPY18C6 complexes were estimated by mole ratio and continuous variation methods and emphasized by the KINFIT program. The stoichiometry of all the complexes was found to be 1: 1 (metal ion/ligand). The order of stability constants for the obtained metal ion-murexide complexes (1: 1) varies in the order Cu2+ > Cd2+ > Co2+ ∼ Pb2+ > Zn2+ > Ag+ > Hg2+. This trend shows that the transition metal ions clearly obey the Irving-Williams role. For the post-transition metal ions, the ionic radius and soft-hard behavior was the major affects in varying of this order. The dibenzopyridino-18-crown-6 complexes with the used metal ions vary as Ag+ > Pb2+ > Cu2+ > Cd2+ > Hg2+ > Zn2+ > Co2+. The article is published in the original.  相似文献   

2.
An automatic titration method is reported to resolve ternary mixtures of transition metals (Pb2+, Cd2+ and Cu2+) employing electronic tongue detection and a reduced number of pre‐defined additions of EDTA titrant. Sensors used were PVC membrane selective electrodes with generic response to heavy‐metals, plus an artificial neural network response model. Detection limits obtained were ca. 1 mg L?1 for the three target ions and reproducibilities 3.0 % for Pb2+, 4.1 % for Cd2+ and 5.2 % for Cu2+. The system was applied to contaminated soil samples and high accuracy was obtained for the determination of Pb2+. In the determination Cd2+ and Cu2+, sample matrix showed a significant effect.  相似文献   

3.
A series of calix[4]arene-based chromogenic sensors bearing the 9,10-anthraquinone moiety have been synthesized and examined for their abilities to recognize various cations such as Li+, Na+, K+, Rb+, Cs+, Ag+, Cd2+, Mg2+, Ca2+, Sr2+, Ba2+, Zn2+, Hg2+, Pb2+, Co2+, and Cu2+ by UV-vis spectroscopy. In acetonitrile, the presence of Cu2+ induces the formation of the 1:1 ligand/metal complex, which exhibits a new absorption band centered at 450 nm, and leads to an obvious color change from yellow to red.  相似文献   

4.
The metal chelates formed by the reaction of Co2+, Cu2+, Ni2+, Zn2+, and Cd2+ with malonic hydrazide and its arylidene derivatives are investigated. The i.r.-absorption spectra of the solid compounds supported the tetradentate character of these compounds; they also show that the ligand still attained the keto form. The shift of the C=O, C=N bands is utilized in determining the coordination bond length. The stoichiometry of the metal complexes, as studied by spectrophotometric and conductometric methods, is found to be metal ion: ligand =11. The apparent formation constants of the malonic hydrazide complexes are also determined.

Mit 4 Abbildungen  相似文献   

5.
The complexation reaction between Zn2+, Pb2+, Cd2+ and Tl+ cations by 5,7‐diiodo‐8‐hydroxyquinoline (IQN) was studied in the Dimethylformamide /Acetonitril (DMF‐AN) binary system using square wave polarography technique. The stoichiometry and stability of the complexes were determined by monitoring the shifts in half‐wave or peak potential of the polarographic waves of metal ions against the ligand concentration. The stoichiometry of the complexes was found to be 1:1. The results obtained show that there is an inverse relationship between the formation constant of the complexes and the donor number of solvent base on the Guttmann donocity scale. In all cases the formation constants increased with increasing amounts of AN in these binary systems. The selectivity order for IQN complexes with the cations is Zn2+ > Pb2+ > Cd2+ > Tl+.  相似文献   

6.
The complexation of dibenzopyridino-18-crown-6 with some transition and heavy metal ions in methanol solution at various temperatures was studied by a competitive potentiometric method using a Ag+/Agelectrode system. The stoichiometry and stability of the resulting complexes were computed by the MINIQUAD program. The stability of the resulting complexes varied in the order Ag+ > Pb2+ > Tl+ > Cu2+ > Cd2+ > Zn2+. The enthalpy and entropy of the resulting 1:1 complexeswere evaluated from the temperature dependence of the stability constants.The complexes of all cations were enthalpy-stabilized but entropy-destabilized,except for Ag+ and Pb2+ ions,which were also entropy-stabilized.  相似文献   

7.
Synthesis of four different types of ligands Ar[COC(NOH)R] n (Ar = biphenyl, n = 1, HL1; Ar = biphenyl, n = 2, H2L2; Ar = diphenylmethane, n = 1, HL3; Ar = diphenylmethane, n = 2, H2L4; R = furfurylamine in all ligands) and their dinuclear Co2+, Ni2+, Cu2+, and Zn2+ complexes is reported herein. These compounds were characterized by elemental analysis, ICP-OES, FT-IR spectra, and magnetic susceptibility measurements. The ligands were further characterized by 1H NMR. The results suggest that dinuclear complexes of HL1 and HL3 have a metal to ligand mole ratio of 2: 2 and dinuclear complexes H2L2 and H2L4 have a metal to ligand mole ratio of 2: 1. Square pyramidal or octahedral structures are proposed for complexes of oxime ligands. Furthermore, extraction abilities of the four ligands were also evaluated in chloroform using selected transition metal picrates such as Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+. The ligands show strong binding ability towards Hg2+ and Cu2+ ions.  相似文献   

8.
The kinetics and mechanisms of the copper(II)‐catalyzed GSH (glutathione) oxidation are examined in the light of its biological importance and in the use of blood and/or saliva samples for GSH monitoring. The rates of the free thiol consumption were measured spectrophotometrically by reaction with DTNB (5,5′‐dithiobis‐(2‐nitrobenzoic acid)), showing that GSH is not auto‐oxidized by oxygen in the absence of a catalyst. In the presence of Cu2+, reactions with two timescales were observed. The first step (short timescale) involves the fast formation of a copper–glutathione complex by the cysteine thiol. The second step (longer timescale) is the overall oxidation of GSH to GSSG (glutathione disulfide) catalyzed by copper(II). When the initial concentrations of GSH are at least threefold in excess of Cu2+, the rate law is deduced to be ?d[thiol]/dt=k[copper–glutathione complex][O2]0.5[H2O2]?0.5. The 0.5th reaction order with respect to O2 reveals a pre‐equilibrium prior to the rate‐determining step of the GSSG formation. In contrast to [Cu2+] and [O2], the rate of the reactions decreases with increasing concentrations of GSH. This inverse relationship is proposed to be a result of the competing formation of an inactive form of the copper–glutathione complex (binding to glutamic and/or glycine moieties).  相似文献   

9.
A new series of macrocyclic diamides with carboxyl, pyridyl and picolinate pendant arms have been synthesized and the stability constants of their complexes with Ni2+, Cu2+, Zn2+, Cd2+, Pb2+ in water were determined. Complexes with a stoichiometry of 1 : 1 (M: L) were found for all ligands with the exception of 15-membered crown ethers with one pendant carboxyl or pyridine group. The ligand containing two picolinate backbone groups exhibits the highest values of the stability constants for all studied cations (logβML?=?12.5–15.7). X-ray study of free ligands showed that the introduction of benzene and amide fragments into the macrocyclic moiety provides a flatten open structure of the ligand. The crystallographic analysis of Cu2+ and Zn2+ complexes revealed the external coordination of the metal atom by amine N atoms of the macrocycle and heteroatoms of the pendant groups.  相似文献   

10.
Guo  Yan-He  Ge  Qing-Chun  Lin  Hua-Kuan  Zhu  Shou-Rong  Lin  Hai 《Transition Metal Chemistry》2004,29(1):42-45
The coordination properties of two C3-symmetry hexaza tripods, 1,3,5-tri(2,5-diazahexyl)benzene (L1) and 1,3,5-tri(2,5-diazaheptyl)benzene (L2), towards Zn2+, Cu2+, Ni2+ and Co2+ ions, studied by potentiometric techniques, are reported. Both ligands form quite stable complexes either in a 1:1 or 1:3 M:L stoichiometry, presenting a preferential coordination order: Zn2+ < Cu2+ > Ni2+ > Co2+. It is observed that the different configurations of metal complexes are achieved due to the fact that tripodal ligands are flexible and not constrained into a rigid geometry.  相似文献   

11.
The synthesis and characterization (1H and 13C NMR) of a partially substituted lower rim p-tert-butylcalix(4)arene, namely, 5,11,17,23-tetra-4-tert-butyl-25,27-bis(diethylphosphate amino)ethoxy-26,28-dihydroxycalix[4]arene (1), are reported. The solution thermodynamics of the ligand in a variety of solvents at 298.15?K was investigated through solubility (hence standard Gibbs energy of solution) measurements while the calorimetric technique was used to derive the standard solution enthalpy. These data were used to calculate the standard entropy of solution. An enthalpy–entropy compensation effect is shown and, as a result, slight variations are observed in the transfer Gibbs energies of this ligand from the reference to other solvents. 1H NMR, conductance and calorimetric measurements were carried out to establish the degree of interaction of the ligand with univalent (Li+, Na+, K+, Rb+, Cs+ and Ag+) and bivalent (Mg2+, Ca2+, Sr2+, Ba2+, Pb2+, Cd2+, Hg2+, Cu2+, Zn2+) cations in acetonitrile, methanol, N,N-dimethylformamide and propylene carbonate. No complexation was found between this ligand and univalent cations in these solvents. As far as the bivalent cations are concerned, interaction between 1 and these cations was found only in acetonitrile. The versatile behaviour of this ligand with bivalent cations in this solvent is reflected by the formation of complexes of different stoichiometry. Thus the interaction of 1 with alkaline-earth (Mg2+, Ca2+, Sr2+, Ba2+) and Pb2+ metal cations leads to the formation of 1:2 (cation:ligand) complexes. However, for other bivalent metal cations (Cu2+, Zn2+, Cd2+ and Hg2+) the complex stoichiometry was found to be 1:1. The results are discussed in terms of the key role played by acetonitrile in processes involving calix[4]arene derivatives.  相似文献   

12.
A differential pulse polarographic study of the Cd2+/gamma-Glu-Cys and Cd2+/Cys-Gly systems assisted by the alternating least-squares multivariate curve resolution (MCR-ALS) method was carried out to obtain a better understanding of the different metal affinities of the complexation sites on glutathione (GSH). The simultaneous analysis of the titration of peptide with metal and of metal with peptide allowed the resolution of the Cd2+/Cys-Gly system, whereas in the analysis of the Cd2+/gamma-Glu-Cys system the analysis of a single titration experiment was sufficient. The analysis of the shape of the resulting pure voltammograms and concentration profiles of the resolved components suggested the presence of two different types of bound Cd2+ in the two systems considered, that could be attributed to Cd2+ bound to one or two sulfur atoms to form complexes of stoichiometry 1:1 and 1:2. respectively.  相似文献   

13.
In this work, we study the elimination of three bivalent metal ions (Cd2+, Cu2+, and Pb2+) by adsorption onto natural illitic clay (AM) collected from Marrakech region in Morocco. The characterization of the adsorbent was carried out by X-ray fluorescence, Fourier transform infrared spectroscopy and X-ray diffraction. The influence of physicochemical parameters on the clay adsorption capacity for ions Cd2+, Cu2+, and Pb2+, namely the adsorbent dose, the contact time, the initial pH imposed on the aqueous solution, the initial concentration of the metal solution and the temperature, was studied. The adsorption process is evaluated by different kinetic models such as the pseudo-first-order, pseudo-second-order, and Elovich. The adsorption mechanism was determined by the use of adsorption isotherms such as Langmuir, Freundlich, and Temkin models. Experiments have shown that heavy metals adsorption kinetics onto clay follows the same order, the pseudo-second order. The isotherms of adsorption of metal cations by AM clay are satisfactorily described by the Langmuir model and the maximum adsorption capacities obtained from the natural clay, using the Langmuir isotherm model equation, are 5.25, 13.41, and 15.90 mg/g, respectively for Cd(II), Cu(II), and Pb(II) ions. Adsorption of heavy metals on clay is a spontaneous and endothermic process characterized by a disorder of the medium. The values of ΔH are greater than 40 kJ/mol, which means that the interactions between clay and heavy metals are chemical in nature.  相似文献   

14.
The effects of pH, metal ions (i.e. Cu2+, Cd2+, Pb2+ and Zn2+) and natural organic matter (i.e. Suwannee River natural organic matter standard [SRNOM]) on determination of thiol (i.e. reduced glutathione [GSH]) by cathodic stripping voltammetry were evaluated. pH was the most critical parameter to influence GSH voltammogram (i.e. peak shape, position and height). In presence of Cu and Cd, secondary peaks were found at [metal]/GSH > 1 due to formation of GSH complexes at pH = 8.0 (Cu and Cd) and 2.5 (Cu only). On the other hand, Pb showed negligible influence on GSH voltammogram at pH 8.0 and 2.5 within [Pb]/[GSH] = 0.01–2.0. Zn significantly reduced GSH peak height at pH 2.5 at [Zn]/[GSH] = 0.01–2.0. SRNOM peak significantly overlapped with GSH peak at pH 8.0 and [SRNOM] > 1 mg L?1 but was clearly separated from the GSH peak at pH 2.5. However, at pH 2.5, the presence of metal ions and/or SRNOM significantly underestimated GSH concentration (recovery = 21–69%), likely due to metal complexation with GSH and/or SRNOM adsorption onto Hg electrode. The effects of metal ions were minimised by the addition of EDTA. The interference induced by SRNOM adsorption was reduced as the [SRNOM] was reduced to 1 mg L?1 and the recovery was improved to 98%.  相似文献   

15.
Summary Several new complexes of the title ligand (H2MPTS) with CoII, NiII, CuII, and CdII have been prepared. Structural assignments of the complexes have been made based on elemental analysis, molar conductivity, magnetic moment and spectral (i.r.,1H n.m.r., reflectance) studies. The compounds are non-conductors in dimethylsulphoxide. The neutral molecule is coordinated to the metal(II) sulphate as a bidentate ligandvia the two carbonyl groups. The ligand reacts with the metal(II) chlorides with the liberation of two hydrogen ions, behaving as a bianionic quadridentate (NONO) donor. Enolization is confirmed by the pH-titration of H2 MPTS and its metal(II) complexes against NaOH. A distorted octahedral structure is proposed for the CuII complex, while a square planar structure is suggested for both CoII and NiII complexes. The stoichiometry of the complexes formed in EtOH and buffer solutions, their apparent formation constants and the ranges for obedience to Beer's law are reported for CoII, NiII and CuII ions. The ligand pK values are calculated. The antimicrobial activity of H2 MPTS and its CoII, NiII, CuII and MnII complexes is demonstrated.  相似文献   

16.
A new pyrene derivative (1) containing a diaminomaleonitrile moiety exhibits high selectivity for Cu2+ detection. Significant fluorescence enhancement was observed with chemosensor 1 in the presence of Cu2+. However, the metal ions Ag+, Ca2+, Cd2+, Co2+, Fe2+, Fe3+, Hg2+, Mg2+, Mn2+, Ni2+, Pb2+, and Zn2+ produced only minor changes in fluorescence values for the system. The apparent association constant (Ka) of Cu2+ binding in chemosensor 1 was found to be 5.55×103 M−1. The maximum fluorescence enhancement caused by Cu2+ binding in chemosensor 1 was observed over the pH range 5-7.5.  相似文献   

17.
In this work, we have successfully developed novel silver nanoconjugates of pyrazolone analogue and screened its chemosensing potential in aqueous medium. Bispyrazolone silver nanoparticles (Bispyra-AgNPs) were synthesised and characterised through FTIR, UV-visible spectroscopy and atomic force microscopy. The sensing ability was explored towards Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Li+, Pb2+, La3+, Hg2+, Mg2+, Ni2+ and Ba2+ metal ions, respectively. Bispyra-AgNPs showed a highly quenching potential in selective recognition of Cu2+and colour of the solution immediately turned from yellow to purple, after the addition of Cu2+ in to the solution. The developed method also displayed a remarkable selectivity for Cu2+ over others interfering metal ions. The binding ratio and stoichiometry of host-guest complex was found to be 1:1 and determined by Job’s method. The propose method is facile and sensitive to detect Cu2+ with detection limit of 10 µM.  相似文献   

18.
A thermodynamic study of the complexation of Cu2+, Pb2+, Zn2+ and Cd2+ ions with 1 and 2 in acetonitrile has been carried out. The study was conducted in the temperature range 283–308 K using a conductometric technique. The observed molar conductivity, Λ, was found to decrease significantly for mole ratios [L]t/[M]t less than unity in all cases. A model involving 1:1 stoichiometry has been used to analyze the conductivity data. The stability constant, K, for each 1:1 complex was determined from the conductivity data by using a nonlinear least-squares curve fitting procedure. The results show that compound 1 has no peak selectivity for any of the metal cations, while compound 2 selectively associates with Cu2+ and Pb2+. Complexes of 1 have the following stability order Pb2+ > Cu2+ > Zn2+ > Cd2+  and Pb2+ > Cu2+ for the complexes of 2. The ?H° and ?S° values for the complexation process were obtained from the slope and intercept of the Van’t Hoff plots respectively. All ?G° values were negative and were determined from the Gibbs–Helmholtz equation and the significance of these values is discussed.  相似文献   

19.
Proteins have evolved with distinct sites for binding particular metal ions. This allows metalloproteins to perform a myriad of specialized tasks with conformations tailor-made by the combination of its primary sequence and the effect on this of the ligated metal ion. Here we investigate the selectivity of the calcium trigger protein calmodulin for divalent metal ions. This ubiquitous and highly abundant protein exists in equilibrium between its apo and its holo form wherein four calcium ions are bound. Amongst its many functions, calmodulin modulates the calcium concentration present in cells, but this functional property renders it a target for competition from other metal ions. We study the competition posed by four other divalent cations for the calcium binding sites in calmodulin using electrospray ionization mass spectrometry (ESI-MS). We have chosen two other group II cations Mg2+, Sr2+, and two heavy metals Cd2+, Pb2+. The ease with which each of these metals binds to apo and to holo CaM[4Ca] is described. We find that each metal ion has different properties with respect to calmodulin binding and competition with calcium. The order of affinity for apo CaM is Ca2+ ≫ Sr2+ ∼ Mg2+ > Pb2+ ∼ Cd2+. In the presence of calcium the affinity alters to Pb2+ > Ca2+ > Cd2+ > Sr2+ > Mg2+. Once complexes have been formed between the metal ions and protein (CaM:[xM]) we investigate whether the structural change which must accompanies calcium ligation to allow target binding takes place for a given CaM:[xM] system. We use a 20 residue target peptide, which forms the CaM binding site within the enzyme neuronal nitric-oxide synthase. Our earlier work (Shirran et al. 2005) [1] has demonstrated the particular selectivity of this system for CaM:4Ca2+. We find that along with Ca2+ only Pb2+ forms complexes of the form CaM:4M2+:nNOS. This work demonstrates the affinity for calcium above all other metals, but also warns about the ability of lead to replace calcium with apparent ease.  相似文献   

20.
ABSTRACT

Guanidinylated carboxymethyl chitosan (GCMCS) was prepared via the guanidinylation of carboxymethyl chitosan (CMCS). A device employing the diffusive gradients for thin films (DGT) technique was made using a GCMCS aqueous solution as the binding agent and a cellulose acetate dialysis membrane (CADM) as the diffusion phase to measure labile Cu2+, Pb2+ and Cd2+ in water. The percentage uptake (U%) values of labile Cu2+, Pb2+ and Cd2+ in a synthetic water sample were almost consistent with the theoretical values at 101.6 ± 2.8%, 104.6 ± 6.1% and 95.9 ± 4.4%, respectively. The optimum pH ranges for the measurement of labile Cu2+, Pb2+ and Cd2+ were 3.0–7.0, 3.0–7.0 and 4.0–8.0, respectively. The ionic strength mainly affected the diffusion of metal ions in the CADM. The diffusion rates decreased with increasing concentrations of NaNO3 solutions. The application of GCMCS-DGT in natural water and industrial wastewater showed that dissolved organic carbon (DOC) only affects metal species, and the accurate determination of labile Cu2+, Pb2+ and Cd2+ can be achieved when the diffusion coefficients of these metal ions in the diffusion phase have been determined. GCMCS is suitable for DGT application as a chelating agent for metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号