首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Racemic 2,2′-bis[diarylstibano]-1,1′-binaphthyls [(±)-BINASbs] and 2,2′-bis[di(p-tolyl)bismuthano]-1,1′-binaphthyl [(±)-BINABi], which are the antimony and bismuth congeners of BINAP, have been prepared from 2,2′-dibromo-1,1′-binaphthyl (DBBN) via 2,2′-dilithio-1,1′-binaphthyl intermediate by treatment with the appropriate metal halides [(p-Tol)2SbBr, Ph2SbBr and (p-Tol)2BiCl]. The optical resolution of the (±)-BINASbs could be achieved via the separation of a mixture of the diastereomeric Pd-complexes derived from the reaction of (±)-BINASbs with di-μ-chlorobis{(S)-2-[1-(dimethylamino)-ethyl]phenyl-C1,N}dipalladium(II). Optically active (R)-BINASb and (R)-BINABi could be also obtained from optically active (R)-DBBN by the same procedure. The enantiopure BINASbs have been shown to be effective chiral ligands for the rhodium-catalyzed asymmetric hydrosilylation of ketones.  相似文献   

2.
The reactions of CpRu(dppf)Cl (1) with the sulfur-containing ligands, thiophenol HSPh, 2-mercaptopyridine C5H4N(SH), thiourea SC(NH2)2, vinylene trithiocarbonate SCS(CH)2S and ethylene trithiocarbonate SCS(CH2)2S, yielded chloro-substituted derivatives, viz. the mono-ruthenium(II) complexes CpRu(dppf)(SPh) (2), [CpRu(dppf)(SC5H4NH)]BPh4 (3)BPh4, [CpRu(dppf)(SC(NH2)2]PF6 (4)PF6, [CpRu(dppf)(SCS(CH)2S)]Cl (5)Cl and [CpRu(dppf)(SCS(CH2)2S)]Cl (6)Cl, respectively. Treatment of 1 with AuCl(SMe2) in the presence of NH4PF6 gave [(CpRu(dppf)(SMe2)]PF6 (7)PF6. The reaction of 1 or 6 with SnCl2 resulted in cleavage of chloro and dithiocarbonate ligands, respectively, to give CpRu(dppf)SnCl3 (8). All complexes were spectroscopically characterized and the structures of 2 and cationic complexes 4-7 were determined by single-crystal diffraction analyses.  相似文献   

3.
This review summarizes the literature on 4-acyl-5-pyrazolone ligands, their synthesis, characterization and coordination chemistry toward main group, transition, lanthanide and actinide metals and relevant applications of their metal complexes.  相似文献   

4.
The reactions of [RuH(CO)Cl(PPh3)3] with N,N-bis(salicylidine)-hydrazine (H2bsh) and N,N-bis(salicylidine)-p-phenylene diammine (H2bsp) in presence of KOH in methanol led in the formation of neutral mononuclear complexes with the formulations [RuH(CO)(PPh3)2(L)] (LHbsh or Hbsp). These present the first examples where the ligands H2bsh or H2bsp provide only two of its available donor sites for interaction with the metal centre. The complexes have been characterized by elemental analyses, FAB-MS, IR, 1H, 13C, 31P NMR and electronic spectral studies. Molecular structure of the representative complex [RuH(CO)(PPh3)2(Hbsh)] have been determined by single crystal X-ray analysis.  相似文献   

5.
BINOL-derived N-phosphino sulfoximines have been prepared for the first time and tested as ligands in asymmetric transition metal catalysis. Up to 99% ee was achieved in the Rh-catalyzed asymmetric hydrogenation of functionalized olefins and up to 66% ee in the Pd-catalyzed allylic alkylation.  相似文献   

6.
This account summarizes the research conducted in our laboratory over the past five years. New methodologies were devised for the formation of P-C bonds with a focus on the reactions of hypophosphorous acid derivatives. Three types of reactions have been developed: palladium-catalyzed cross-coupling, room-temperature radical addition, and palladium-catalyzed addition. Our results are summarized in each of these areas and include some of our most recent data. (1) Our palladium-catalyzed cross-coupling has been extended to the direct coupling of alkyl phosphinates with a variety of aryl, heteroaryl, and even alkenyl electrophiles. (2) The addition of sodium hypophosphite under radical conditions is extended from alkenes to alkynes. (3) The catalytic addition of hypophosphorous compounds using palladium catalysts (hydrophosphinylation) is also discussed.  相似文献   

7.
Complexes of ZnII salts with 4,4′-bipyridine-N,N′-dioxide (bpdo) have been prepared by solvathermal and solvent layering methods. Three complexes were obtained from ZnBr2: 1 is a 2D coordination polymer [Zn2Br4(bpdo)2]n, (2) a discrete trimetallic molecule [Zn3Br6(H2O)2(bpdo)4] and 3 a salt [ZnBr4][Zn(H2O)5(bpdo)]. Complexes 2 and 3 contain ZnII ions in both octahedral and tetrahedral coordination geometry. While in 2, these are covalently linked by bridging bpdo ligands forming zwitterionic trimetallic molecules, in 3 there is complete charge separation into [ZnBr4]2− anions and [Zn(H2O)5(bpdo)]2+ cations. When Zn(NCS)2 is used as starting material, a 1D coordination polymer [Zn(H2O)2 (bpdo)(NCS)2]n is obtained.  相似文献   

8.
The lifetime stability of devices containing FIrpic as emitter has been a major concern for organic blue light emitting devices (OLEDs). To gain a deeper knowledge about the purity of FIrpic (bis[2-(4,6-difluorophenyl)pyridyl-N,C2′]iridium (III)) emitters and how the purity is influenced by sublimation steps, non-sublimated and sublimated FIrpic material was analyzed via liquid chromatography coupled with electron spray ionization mass spectrometry (LC/ESI/MS). Cleavage of an electron-withdrawing group from one of the ligands of the heteroleptic phosphorescent emitter could be identified in sublimated FIrpic material via LC/ESI/MS. A detailed chemical analysis using LC/ESI/MS was carried out for complete blue emitting devices of the following structure: indium-tin-oxide (ITO)/50 nm (α-4,4′-bis[(1-naphthyl)phenylamino]-1,1′-biphenyl) (α-NPD)/10 nm 4,4′,4″-tris(carbazol-9-yl)triphenylamine (TCTA)/100 nm TCTA:8% FIrpic/50 nm 1,1′-biphenyl-4′-oxy)-bis(8-hydroxy-2-methylquinolinato)-aluminum (BAlq)/1 nm LiF/100 nm Al. Two isomers of (FIrpic-1F) could be detected in an aged OLED. Changes in the ligand systems of FIrpic, especially the loss of fluorine during the deposition process can alter the emissive properties of the blue phosphorescent emitter. Beside isomer formation and chemical degradation of FIrpic, substantial degradation was observed for the hole transport material α-NPD in driven OLEDs.  相似文献   

9.
Reaction of Ln(NO3)3·6H2O with H2L [H2L=N,N′-bis(salicylidene)propane-1,2-diamine] gives rise to five new coordination polymers, viz. [Pr(H2L)(NO3)3(MeOH)]n (1) and [Ln(H2L)1.5(NO3)3]n [Ln=La (2), Eu (3), Sm (4) and Gd (5)]. Crystal structural analysis reveals that H2L effectively functions as a bridging ligand forming one-dimensional (1D) chain and two-dimensional (2D) open-framework polymers. Solid-state fluorescence spectra of 3 and 4 exhibit typical red fluorescence of Eu(III) and Sm(III) ions at room temperature while 2 emits blue fluorescence of ligand H2L. The lowest triplet level of ligand H2L was calculated on the basis of the phosphorescence spectrum of 5. The energy transfer mechanisms in the lanthanide polymers were described and discussed.  相似文献   

10.
[CpRu(dppf)Cl] (Cp=η5-C5H5) (1) and [(HMB)Ru(dppf)Cl]PF6 ((HMB)=η6-C6Me6) (3) react with different donor ligands to give rise to N-, P- and S-bonded complexes. The stoichiometric reactions of 1 and 3 with NaNCS give the mononuclear complexes [CpRu(dppf)(NCS)] (2) and [(HMB)Ru(dppf)(NCS)]PF6 (4), respectively, in yields above 80%, while 3 also gives a dppf-bridged diruthenium complex [(HMB)Ru(NCS)2]2(μ-dppf) (5) in 67% yield from reaction with four molar equivalents of NaNCS. Compound 5 is also obtained in 70% yield from the reaction of 4 with excess NaNCS. With CH3CN in the presence of salts, both 1 and 3 give their analogous solvento derivatives [CpRu(dppf)(CH3CN)]BPh4 (6) and [(HMB)Ru(dppf)(CH3CN)] (PF6)2 (7). With phosphines, the reaction of 1 gives chloro-displaced complexes [(CpRu(dppf)L]PF6 (L =PMe3 (8), PMe2Ph(9)), whereas the reaction of 3 with PMe2Ph leads to substitution of dppf, giving [(HMB)Ru(PMe2Ph)2Cl] PF6 (10). The reaction of 1 with NaS2CNEt2 gives a dinuclear dppf-bridged complex [{CpRu(S2CNEt2)}2(μ-dppf)] (11), whereas that of 3 results in loss of the HMB ligand giving a mononuclear complex [Ru(dppf)(S2CNEt2)2] (12). With elemental sulfur S8, 1 is oxidized to give a dinuclear CpRuIII dppf-chelated complex [{CpRu(dppf)}2(μ-S2)](BPh4)Cl (13), whereas 3 undergoes oxidation at the ligand, giving a dppf-displaced complex [(HMB)Ru(CH3CN)2Cl]PF6 (14) and free dppfS2. The structures of 1, 2, 5-9, 11, 13 and 14 were established by X-ray single crystal diffraction analyses. Of these, 5 and 11 both contain a dppf-bridge between RuII centers, while 13 is a dinuclear CpRuIII disulfide-bridged complex; all the others are mononuclear. All complexes obtained were also spectroscopically characterized.  相似文献   

11.
手性多孔有机聚合物具有较高的稳定性和催化活性,广泛用于多相不对称催化中.目前研究多集中在合成具有微孔结构的聚合物,而少有具有多种孔道结构(包含介孔和微孔)的聚合物的报道.之前我们报道了乙烯基修饰的BINAP配体,(S)-5,5'-divinyl-BINAP,将其与不同单体共聚后得到了一系列具有不同孔结构的有机聚合物.其负载的Rh基催化剂在苯乙烯不对称氢甲酰化反应中,表现出比均相更高的产物对映体选择性.本文采用不同的溴代步骤,合成了(S)-4,4'-divinyl-BINAP配体.将这两种具有乙烯基官能团的手性配体按相同的摩尔比与二乙烯基苯(DVB)共聚,得到两种不同的有机聚合物.负载[RuCl2(benzene)]2后,分别得到Ru/4-BINAP@POPs和Ru/5-BINAP@POPs-1.采用一锅法合成了催化剂Ru/5-BINAP@POPs-2;以[RuCl2(p-cyme)]2和RuCl3分别合成了Ru/5-BINAP@POPs-3和Ru/5-BINAP@POPs-4催化剂.N2物理吸附结果显示,Ru/4-BINAP@POPs和Ru/5-BINAP@POPs-1催化剂具有相似的孔道结构;而采用一锅法合成的Ru/5-BINAP@POPs-2催化剂的介孔孔径较大.4-BINAP@POPs和5-BINAP@POPs聚合物的13C核磁显示,其均在145,137和128 ppm处有明显的吸收峰,可归结为萘环和苯环上的碳振动峰;在44.0 ppm处的峰归属为亚甲基上的碳振动峰;31P核磁显示,在聚合物中P基本没有被氧化.将所得到的Ru/POPs催化剂应用于乙酰乙酸甲酯的多相不对称加氢反应中,Ru/5-BINAP@POPs-1催化剂具有与Ru/4-BINAP@POPs更快的反应速率.在相同反应条件下,催化剂活性大小为Ru/5-BINAP@POPs-1>Ru/5-BINAP@POPs-3>Ru/5-BINAP@POPs-4>Ru/5-BINAP@POPs-2.另外Ru/5-BINAP@POPs-1催化剂对β-酮酸酯有着较好的底物适应性,且在釜式反应中可循环使用6次而活性基本不变.分析发现,使用前后的催化剂均没有明显的Ru–Ru键的存在.表明Ru金属高度分散于催化剂上,且具有较高的稳定性,金属不易聚集,这也是其具有高活性和稳定性的原因.  相似文献   

12.
The reactions of Mo2(O2CCH3)4 with different equivalents of N,N′-bis(pyrimidine-2-yl)formamidine (HL1) and N-(2-pyrimidinyl)formamide (HL2) afforded dimolybdenum complexes of the types Mo2(O2CCH3)(L1)2(L2) (1) trans-Mo2(L1)2(L2)2 (2) cis-Mo2(L1)2(L2)2 (3) and Mo2(L2)4 (4). Their UV–Vis and NMR spectra have been recorded and their structures determined by X-ray crystallography. Complexes 2 and 3 establish the first pair of trans and cis forms of dimolybdenum complexes containing formamidinate ligands. The L1 ligands in 13 are bridged to the metal centers through two central amine nitrogen atoms, while the L2 ligands in 14 are bridged to the metal centers via one pyrimidyl nitrogen atom and the amine nitrogen atom. The Mo–Mo distances of complexes 1 [2.0951(17) Å], 2 [2.103(1) Å] and 3 [2.1017(3) Å], which contain both Mo?N and Mo?O axial interactions, are slightly longer than those of complex 4 [2.0826(12)–2.0866(10) Å] which has only Mo?O interactions.  相似文献   

13.
Bithienyl-1,3-benzothiazole derivatives were synthesised by reacting various 5-formyl-5′-alkoxy- or 5-formyl-5′-N,N-dialkylamino-2,2′-bithiophenes with ortho-aminobenzenethiol in good to excellent yields. Evaluation of the fluorescence properties of these compounds was carried out. They show strong fluorescence in the 450-600 nm region, as well as high quantum yields and large Stokes’ shifts.  相似文献   

14.
A wide range of commercial diazodicarboxylates and phosphines were screened in an attempt to find purification-free conditions for application in parallel synthesis. The combination of immobilized triphenylphosphine and TMAD proved to be suitable for the synthesis of aryl ethers via the Mitsunobu reaction. Nine ethers were synthesized in good yield and excellent purity, the purification being limited to a filtration step.  相似文献   

15.
The active site of Acetyl CoA Synthase utilizes a square planar NiN2S2 complex in the form of NiII(CGC)2− (CGC = the cysteine-glycine-cysteine tripeptide motif within the protein) to serve as a bidentate sulfur-donor ligand to chelate a second, catalytically active Ni atom responsible for the C-C and C-S coupling reactions for the production of Acetyl CoA. Metalloenzymes, such as this, which house stable catalytic complexes within intricately designed pockets accessible by solvent channels, have inspired design of resin-bound complexes. Through the use of TentaGel S-RAM® resin beads, the O-Ni(CGC)2− ligand has been synthesized and derivatized with the RhI(CO)2 moiety. The identification of the adduct on these resin beads is afforded by attenuated total reflectance FTIR spectroscopy in the ν(CO) region and compared to solution analogues. The goal of this study is to establish a quantitative measure of the loading of nickel and rhodium on the tripeptide modified resin beads, O-(CGC). The extent of CGC derivatization was determined by Fmoc cleavage of the Fmoc protected O-(CGC). Nickel and rhodium loading were determined by Neutron Activation Analysis. This work provides evidence that the TentaGel S-RAM® resin beads greatly decrease the air sensitivity of the Ni-Rh complex as compared to the unsupported solution phase analogue. The derivatized beads have also been studied for their ability to withstand a number of physical stresses, i.e., for leaching.  相似文献   

16.
17.
The compounds Ru(CCCCFc)(PP)Cp [PP = dppe (1), dppm (2)], have been obtained from reactions between RuCl(PP)Cp and FcCCCCSiMe3 in the presence of KF (1) or HCCCCFc and K[PF6] (2), both with added dbu. The dppe complex reacts with Co2(CO)6(L2) [L2 = (CO)2, dppm] to give 3, 4 in which the Co2(CO)4(L2) group is attached to the outer CC triple bond. The PPh3 analogue of 3 (5) has also been characterised. In contrast, tetracyanoethene reacts to give two isomeric complexes 6 and 7, in which the cyano-olefin has added to either CC triple bond. The reaction of RuCl(dppe)Cp with HCCCCFc, carried out in a thf/NEt3 mixture in the presence of Na[BPh4], gave [Ru{CCC(NEt3)CHFc}(dppe)Cp]BPh4 (8), probably formed by addition of the amine to an (unobserved) intermediate butatrienylidene [Ru(CCCCHFc)(dppe)Cp]+. The reaction of I2 with 8 proceeds via an unusual migration of the alkynyl group to the Cp ring to give [RuI(dppe){η-C5H4CCC(NEt3)CHFc}]I3 (9). Single-crystal X-ray structural determinations of 1, 2 and 4-9 are reported.  相似文献   

18.
Recent developments in asymmetric aziridination   总被引:1,自引:0,他引:1  
  相似文献   

19.
Chiral N,N-diaryl C2-symmetric diamines and N-aryl,N′-formyl-trans-(1R,2R)-diaminocyclohexane are readily accessed by copper catalyzed N,N-diarylation and N-aryl,N′-formylation of trans-(1R,2R)-diaminocyclohexane with aryl bromides. N,N′-diarylation using (R)-1,1′-binaphthyl-2,2′-diamine and iodobenzene gave the corresponding (R)-N,N-diphenyl-1,1′-binaphthyl-2,2′-diamine derivative in 83% yield.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号