首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using an atomic force microscope (AFM) the interaction between an AFM tip and different planar solid surfaces have been measured across a long-chain poly(dimethyl siloxane) (PDMS, MW = 18,000 g/mol), a short-chain PDMS (MW = 4200 g/mol), a poly(ethylmethyl siloxane) (PEMS, MW = 16,800 g/mol), and a diblock copolymer consisting of one PDMS and one PEMS block (PDMS-b-PEMS, MW = 15,100 g/mol). The interaction changed significantly during the first 10 h after immersing the solids in the polymer melt. This demonstrates that the time scale of structural changes at a solid surface is much slower than in the bulk. On mica and silicon oxide both polymers formed an immobilized “pinned” layer beyond which a monotonically decaying repulsive force was observed. Attractive forces were observed with short-chain PDMS on silicon oxide and PEMS on mica and silicon oxide. On the basal plane of graphite PEMS caused a stable, exponentially decaying oscillatory force.  相似文献   

2.
The potential ability of atomic force microscopy (AFM) as a quantitative bioanalysis tool is demonstrated by using gold nanoparticles as a size enhancer in a DNA hybridization reaction. Two sets of probe DNA were functionalized on gold nanoparticles and sandwich hybridization occurred between two probe DNAs and target DNA, resulting in aggregation of the nanoparticles. At high concentrations of target DNA in the range from 100 nM to 10 μM, the aggregation of gold nanoparticles was determined by monitoring the color change with UV-vis spectroscopy. The absorption spectra broadened after the exposure of DNA–gold nanoparticles to target DNA and a new absorption band at wavelengths >600 nm was observed. However, no differences were observed in the absorption spectra of the gold nanoparticles at low concentrations of target DNA (10 pM to 10 nM) due to insufficient aggregation. AFM was used as a biosensing tool over this range of target DNA concentrations in order to monitor the aggregation of gold nanoparticles and to quantify the concentration of target DNA. Based on the AFM images, we successfully evaluated particle number and size at low concentrations of target DNA. The calibration curve obtained when mean particle aggregate diameter was plotted against concentration of target DNA showed good linearity over the range 10 pM to 10 nM, the working range for quantitative target DNA analysis. This AFM-based DNA detection technique was three orders of magnitude more sensitive than a DNA detection method based on UV-vis spectroscopy.  相似文献   

3.
Coatings developed to reduce biofouling of engineered surfaces do not always perform as expected based on their native properties. One reason is that a relatively small number of highly adhesive sites, or the heterogeneity of the coated surface, may control the overall response of the system to initial bacterial deposition. It is shown here using an approach we call spectral force analysis (SFA), based on force volume imaging of the surface with atomic force microscopy, that the behavior of surfaces and coatings can be better understood relative to bacterial adhesion. The application of vapor deposited TiO2 metal oxide increased bacterial and colloid adhesion, but coating the surface with silica oxide reduced adhesion in a manner consistent with SFA based on analysis of the “stickiest” sites. Application of a TiO2-based paint to a surface produced a relatively non-fouling surface. Addition of a hydrophilic layer coating to this surface should have decreased fouling. However, it was observed that this coating actually increased fouling. Using SFA it was shown that the reason for the increased adhesion of bacteria and particles to the hydrophilic layer was that the surface produced by this coating was highly heterogeneous, resulting in a small number of sites that created a stickier surface. These results show that while it is important to manufacture surfaces with coatings that are relatively non-adhesive to bacteria, it is also essential that these coatings have a highly uniform surface chemistry.  相似文献   

4.
Atomic force microscopy (AFM) has been used for the characterization of the surface topography and microstructure of polyethylene (PE) films with thickness of about 50 μm. Different compositions of the films were tested, including mixtures of LDPE fabricated with metallocene polyethylene (mPE). The characteristics of the fibrils and spherulites of the films have been observed by means of AFM without any preparation of the samples, allowing also differentiation of the amorphous and crystalline zones. A method is proposed for the quantification of the proportion of crystallinity based on the roughness of the films.  相似文献   

5.
Surface treatment of polysulfone by O2, H2, He, Ne, Ar, and CF4 nonisothermal glow discharges has been investigated by x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The chemical and topographical modification of the surface is found to be strongly influenced by the type of feed gas employed. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
The advent of a new class of force microscopes designed specifically to “pull” biomolecules has allowed non-specialists to use force microscopy as a tool to study single-molecule protein unfolding. This powerful new technique has the potential to explore regions of the protein energy landscape that are not accessible in conventional bulk studies. It has the added advantage of allowing direct comparison with single-molecule simulation experiments. However, as with any new technique, there is currently no well described consensus for carrying out these experiments. Adoption of standard schemes of data selection and analysis will facilitate comparison of data from different laboratories and on different proteins. In this review, some guidelines and principles, which have been adopted by our laboratories, are suggested. The issues associated with collecting sufficient high quality data and the analysis of those data are discussed. In single-molecule studies, there is an added complication since an element of judgement has to be applied in selecting data to analyse; we propose criteria to make this process more objective. The principal sources of error are identified and standardised methods of selecting and analysing the data are proposed. The errors associated with the kinetic parameters obtained from such experiments are evaluated. The information that can be obtained from dynamic force experiments is compared, both quantitatively and qualitatively to that derived from conventional protein folding studies.  相似文献   

7.
Bilek G  Kremser L  Blaas D  Kenndler E 《Electrophoresis》2006,27(20):3999-4007
CE enabled assessing the attachment of hexa-histidine-tagged proteins to functionalized phospholipid liposomes. The liposomes were made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, phosphatidyl-ethanolamine, cholesterol and distearoyl-glycero-3-phosphoethanolamine-N-methoxy(polyethylene glycol) in a molar ratio of 29:26:40:5. The unilamellar vesicles, which had an average diameter of 170 nm, were labelled by inclusion of FITC-dextran for fluorescence detection. CE was carried out in poly(vinyl alcohol) (PVA)-coated capillaries at 25 degrees C with a BGE consisting of Tris-HCl (50 mM, pH 8.0). For conjugation of the liposomes with the proteins (soluble synthetic receptor fragments with molecular mass of 60 and 70 kDa, respectively), Ni(2+) was implanted into the vesicle surface by an anchor lipid containing a nitrilotriacetate acid (NTA) group as complexation agent for the metal ions. The difference in surface charge enabled the separation of the different species of interest by CE: plain vesicles, vesicles functionalised with Ni-NTA, vesicle-protein complexes and the species formed upon removal of the Ni-ions by complexation with EDTA. Loss of the Ni-ions resulted in the release of the proteins and the reappearance of the plain Ni-free NTA-liposome species in the electropherograms.  相似文献   

8.
An original method based on atomic force microscopy (AFM) in contact mode was developed to abrade progressively the surface of tablets made of starch or gluten polymers isolated from wheat. The volume of the material removed by the tip was estimated from the analysis of successive topographic images of the surface, and the shear force was measured by keeping a constant normal force. Our data together with a simple tribological model provide clear evidence for a higher hardness and shear strength of starch compared to gluten. Gluten appears to have mechanical properties close to soft materials, such as talc, whereas starch displays higher hardness close to calcite. Our results are in a better agreement with structural properties of gluten (complex protein network) and starch (granular and semi-cristalline structure) than earlier studies by micro-indentation. This work shows that the AFM scratching method is relevant for the characterization of any polymer surface, in particular in application to materials made of different polymers at the nano-scale.  相似文献   

9.
In order to avoid denaturation of biomolecules due to strong adsorption on solid surfaces, a soft substrate has to be used for atomic force microscopy (AFM) observation. We propose a hydrophilic agarose gel surface as a soft substrate for AFM to observe liposomes and lipid membranes. Although our simple method does not require any delicate control at the molecular level, an agarose gel surface can be simply flattened to 0.3 nm in roughness using an atomically flat solid surface during gelation. The AFM images revealed that liposomes were unruptured on the gel surface at low liposome density, whereas an unruptured state was difficult to obtain on a solid surface like mica. This indicates that the weak interaction between the liposome and the soft surface inhibits the liposome from rupturing, and also that the surface rougher than the solid surface prevents lateral diffusion of the liposomes along the surface to be fused. Increasing the liposome density resulted in a lipid membrane at various thicknesses forming on the hydrogel surface by the fusion and rupture of liposomes. Using the soft substrate, it can be expected to promote investigations of structures and functions of biomolecules at the nanometer scale under physiological conditions with AFM.  相似文献   

10.
Application of atomic force microscopy to particle sizing   总被引:1,自引:0,他引:1  
AFM has been applied for studying morphology and size distribution of nanometer-sized particles adsorbed on flat surfaces. For the quantitative evaluation of the images an algorithm for automatical particle detection and volume calculation has been developed. In this way a large number of particles can be automatically evaluated in order to derive size distributions or surface coverages. The method has been successfully applied to determine size distributions of environmental aerosol particles collected with an 11-stage low pressure impactor. The first four stages with average aerodynamic equivalent diameters (aed) ranging from 21 to 170 nm were investigated. The calculated aed values were in good agreement with the predicted aed for each stage. Additionally, it could be shown that sampling conditions and storage time affect the derived size distributions. Furthermore, AFM has been applied as reference method for conventional particle sizing techniques. For this purpose technologically relevant powders as titanium oxide powder and tungsten carbide powder were investigated using AFM and the results were compared with conventional techniques such as high resolution SEM and a light scattering method. The derived cumulative size distributions were in good agreement. The results clearly show that AFM constitutes a convenient tool for size determination, not only for ultrafine particles exploiting the high resolving power, but also in the case of larger particles. Received: 2 September 1998 / Revised: 19 October 1998 / Accepted: 22 October 1998  相似文献   

11.
The study of the adsorption behavior of surfac-which makes people further study the adsorptiontants to interfaces is very important in colloid and in-mechanism at the molecular level.terface science[1]owing to the important applications In situ AFM measur…  相似文献   

12.
A comprehensive approach is proposed for studying the microstructure of filled rubbers by optical and atomic force microscopy (AFM). The optical results are found to be dependent on the illumination angle. Algorithms based on the mathematical morphology are developed for the processing of optical images (removing scratches, identifying agglomerates). AFM-images are treated by a segmentation method which separates a continuous surface into segments that match filler. Parameters of secondary filler structures and the size of an area of homogeneous filler dispersion are obtained from the analysis of the segmented images. Seven carbon black filled rubbers with different mixing times are investigated. The combination of AFM with optical imaging techniques makes it possible to perform a quantitative structural analysis at scales from tens of nanometers to tens of microns, and to establish the relationship between the mixing time and the filler microstructure over the whole range of filler peculiarities.  相似文献   

13.
We propose herein a method to study local surface charge dissipation in dielectric films using force spectroscopy technique of atomic force microscopy. By using a normalization procedure and considering an analytical expression of the tip‐sample interaction force, we could estimate the characteristic time decay of the dissipation process. This approach is completely independent of the atomic force microscopy tip geometry and considerably reduces the amount of experimental data needed for the calculation compared with other techniques. The feasibility of the method was demonstrated in a freshly cleaved mica surface, in which the local charge dissipation after cleavage followed approximately a first‐order exponential law with the characteristic time decay of approximately 7–8 min at 30% relative humidity (RH) and 2–3.5 min at 48% RH. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Individual polyhydroxyalkanoate synthase molecules from Ralstonia eutropha (PhaCRe) were directly visualized on highly oriented pyrolytic graphite (HOPG) by atomic force microscopy (AFM). PhaCRe molecule was observed as a spherical particle of 2.9 +/- 0.4 nm in height and 28 +/- 4 nm in width. In vitro polymerization reaction on HOPG was carried out for 5 min by reacting the PhaCRe molecules with (R)-3-hydroxybutyryl-CoA monomers. The reaction product was then observed after the removal of water solution. Several PhaCRe molecules associated with each other to form an assembly, which was attached to a fibrillar structure of ca. 0.2-0.3 nm in height. The fibrillar structure that elongated from the PhaCRe assembly was interpreted as the poly[(R)-3-hydroxybutyrate] polymer chain. High resolution AFM suggested that the PhaCRe assembly was composed of 3-4 subunits of PhaCRe molecules. This was further supported by SDS-PAGE analysis of the cross-linked PhaCRe enzyme. These results suggest that more than two subunits of PhaCRe are necessary for the in vitro polymerization of PHB molecular chains.  相似文献   

15.
Extracellular vesicles are natural delivery systems widely implicated in cellular communication. However, to fully utilize these vehicles as nanocarriers, we must explore various methods to modify their applicability as drug delivery vehicles. In this review, we outline and discuss techniques to engineer extracellular vehicles for enhanced loading, targeting, circulation, and tracking. We highlight cutting-edge methods to amplify extracellular vesicle secretion and production and optimize storage conditions to improve their clinical suitability. Moreover, we focus on reverse engineering as an important step in controlling their biological function. By taking a reductionist approach to characterize and understand the individual components of these carriers, we can not only elucidate complex mechanisms of action but also advance the field through the creation of synthetic drug delivery vehicles. Finally, we propose current challenges and future directions of the field.  相似文献   

16.
Atomic force microscopy (AFM) is used to study the phase separation process occurring in block copolymers in the solid state. The simultaneous measurement of the amplitude and the phase of the oscillating cantilever in the tapping mode operation provides the surface topography along with the cartography of the microdomains of different mechanical properties. This technique thus allows to characterize the size and shape of those microdomains and their organization at the surface (e.g. cubic lattice spheres, hexagonal lattice of cylinders, or lamellae). In this study, a series of symmetric triblock copolymers made of a inner elastomeric sequence (poly(butadiene) or poly(alkylacrylate)) and two outer thermoplastic sequences (poly(methylmethacrylate)) is analyzed by AFM in the tapping mode. The microphase separation and their morphology are essential factors for the potential of these materials as a new class of thermoplastic elastomers. Special attention is paid to the control of the surface morphology, as observed by AFM, by the molecular structure of the copolymers (volume ratio of the sequences, molecular weight, length of the alkyl side group) and the experimental conditions used for the sample preparation. The molecular structure of the chains is completely controlled by the synthesis, which relies on the sequential living anionic polymerization of the comonomers. The copolymers are analyzed as solvent-cast films, whose characteristics depend on the solvent used and the annealing conditions. The surface arrangement of the phase-separated elastomeric and thermoplastic microdomains observed on the AFM phase images is discussed on the basis of quantitative information provided by the statistical analysis by Fourier transform and grain size distribution calculations.  相似文献   

17.
Surface topography of polished and blasted samples of a Ti6Al4V biomaterial has been studied using an atomic force microscope. Surface RMS roughness and surface area have been measured at different scales, from 1 to 50 μm, while at distances below 10 μm the surface RMS roughness in both kinds of samples is not very different, this difference becomes significant at larger scanning sizes. This means that the surface roughness scale that could have a main role in cell adhesion varies depending on the size, shape and flexibility of participating cells. This consideration suggests that in cell–material interaction studies, surface roughness should not be considered as an absolute and independent property of the material, but should be measured at scales in the order of the cell sizes, at least if a microscopic interpretation of the influence of roughness on the adhesion is intended. The microscopic information is contrasted with that coming from a macroscopic approach obtained by contact angle measurements for polar and non-polar liquids whose surface tension is comprised in a broad range. Despite the very large differences of contact angles among liquids for each surface condition, a similar increase for the blasted surface with respect to the polished has been found. Interpretation of these results are in accordance with the microscopic analysis done through the use of a functional roughness parameter, namely the valley fluid retention index, evaluated from the AFM images, which has been shown not to correlate with the RMS roughness, one of the most commonly used roughness parameter.  相似文献   

18.
Surface topography of polished and blasted samples of a Ti6Al4V biomaterial has been studied using an atomic force microscope. Surface RMS roughness and surface area have been measured at different scales, from 1 to 50 μm, while at distances below 10 μm the surface RMS roughness in both kinds of samples is not very different, this difference becomes significant at larger scanning sizes. This means that the surface roughness scale that could have a main role in cell adhesion varies depending on the size, shape and flexibility of participating cells. This consideration suggests that in cell–material interaction studies, surface roughness should not be considered as an absolute and independent property of the material, but should be measured at scales in the order of the cell sizes, at least if a microscopic interpretation of the influence of roughness on the adhesion is intended. The microscopic information is contrasted with that coming from a macroscopic approach obtained by contact angle measurements for polar and non-polar liquids whose surface tension is comprised in a broad range. Despite the very large differences of contact angles among liquids for each surface condition, a similar increase for the blasted surface with respect to the polished has been found. Interpretation of these results are in accordance with the microscopic analysis done through the use of a functional roughness parameter, namely the valley fluid retention index, evaluated from the AFM images, which has been shown not to correlate with the RMS roughness, one of the most commonly used roughness parameter.  相似文献   

19.
The α- and β-form lamellae of isotactic polypropylene were developed at different temperatures. The melting behaviors of the lamellae were observed in real time at elevated temperatures using a hot-stage atomic force microscopy. The melting behavior of the α-form lamellae was determined by the lamellar defects. For the α-form lamellae developed at different undercoolings, the larger the undercoolings, the relatively higher amount of defect in the lamellae was observed. The lamellae with defects were melted into lamellar segments, and recrystallization took place during the heating process. The β-form lamellae had lower thermal stability, and they melted firstly and separately from that of α-form.  相似文献   

20.
Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, ‘bee-structures’ with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the ‘bee-structures’, which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the ‘bee-structures’. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of ‘bee-structures’ in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition, critical technical challenges associated with AFM characterization of bitumen surface structures are discussed, with possible solutions recommended. For future work, combining AFM with other chemical analysis tools that can generate comparable high resolution to AFM would provide an avenue to linking bitumen's chemistry to its microscopic morphological and mechanical properties and consequently benefit the efforts of developing structure-related models for bituminous materials across the different length scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号