首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quartz crystal microbalance(QCM) and cyclic voltammetry(CV) were used to characterize the monolayer of cytochrome c(Cyt c), which was adsorbed on gold film modified with alkanethiol mixed monolayer. A direct comparison of protein surface coverages calculated from QCM and cyclic voltammetric measurements illustrates that the ratio of the electroactive Cyt c to the total surface-confined Cyt cis 34%, which suggests that the orientation is a main factor affecting the electroactivity of Cyt c. Moreover, surface plasmon resonance(SPR) measurement combined with CV “in situ” was used to investigate the conformational change of Cyt c in the redox process. Besides, Au nanoparticles(Au NPs) were adsorbed on the surface of Cyt c. The result indicates that Au NPs promote electron transfer between Cyt c and the gold electrode, and SPR result suggests Au NPs enhance SPR signal.  相似文献   

2.
This paper reports the utilization of triangular silver nanoplates (TSNPs) to enhance the sensitivity of surface plasmon resonance (SPR) biosensor. TSNPs modified with 3-mercaptopropinic acid (MPA) were simply mixed with chitosan and glutaraldehyde to form TSNPs/chitosan composite. The composite was deposited on Au film as immobilization substrate for SPR biosensor. The novel structures of TSNPs are preserved against etching by MPA and chitosan polymer. Moreover, chitosan cross-linked by glutaraldehyde enables antibody to be immobilized on fabricated substrate directly via Schiff alkali reaction. In the optimized conditions, the resulting biosensor based on TSNPs/chitosan composite shows a satisfactory response to bovine IgG in the concentration range of 0.075–40.00 μg mL−1. While the biosensor based on chitosan without TSNPs shows a response in the concentration range of 0.6–40 μg mL−1 and the biosensor based on Au film shows a response in the concentration range of 2.5–40 μg mL−1. The experiment results show that the sensitivity of SPR biosensor based on TSNPs/chitosan composite was significantly enhanced and the immobilization procedure of antibody was simplified.  相似文献   

3.
p-Aminothiophenol (PATP) and humic acids (HA or HAs) were applied jointly as the electron transfer accelerants of redox reactions of cytochrome c (Cyt c) on gold electrodes. The electrochemical properties of the modified electrodes were studied by field emission scanning electron microscope, ultraviolet-visible spectroscopy, electrochemical impedance spectroscopy, Raman spectroscopy and cyclic voltammetry. The immobilized Cyt c displayed a couple of stable and well-defined redox peaks with a formal potential of −0.101 V (vs. SCE) in pH 7.0 phosphate buffer solution. Cyt c adsorption is in the form of a monolayer with average surface coverage of 5.28 pmol cm−2. The electron transfer rate constant was calculated to be 2.14 s−1. It indicate that the HA film acted as a good adsorption matrix for Cyt c and an excellent accelerant for the redox of Cyt c. The Cyt c-HA modified gold electrode showed a new couple of well-marked redox peaks when 2,4-dichlorophenol was added to the test solution.  相似文献   

4.
A novel and sensitive biosensor was developed for the determination of nitrite. Firstly, multi-walled carbon nanotubes–poly(amidoamine)–chitosan (MWNT–PAMAM–Chit) nanocomposite along with the incorporation of DNA was used to modify the glassy carbon electrode. Then the immobilization of Cyt c was accomplished using electrochemical deposition method by consecutive cyclic voltammetry (CV) scanning in a neutral Cyt c solution. CV behaviors of the modified electrodes showed that the MWNT–PAMAM–Chit nanocomposite is a good platform for the immobilization of DNA and Cyt c in order, at the same time, an excellent promoter for the electron transfer between Cyt c and the electrode. At high potential, the immobilized Cyt c could be further oxidized into highly reactive Cyt c π-cation by two-step electrochemical oxidation, which could oxidize NO2 into NO3 in the solution. Therefore, a nitrite biosensor based on the biocatalytic oxidation of the immobilized Cyt c was fabricated, which showed a fast response to nitrite (less than 5 s). The linear range of 0.2–80 μM and a detection limit of 0.03 μM was obtained. Finally, the application in food analysis using sausage as testing samples was also investigated.  相似文献   

5.
An effective electrochemiluminescence (ECL) sensor based on Nafion/poly(sodium 4-styrene sulfonate) (PSS) composite film-modified ITO electrode was developed. The Nafion/PSS/Ru composite film was characterized by atomic force microscopy, UV-vis absorbance spectroscopy and electrochemical experiments. The Nafion/PSS composite film could effectively immobilize tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) via ion-exchange and electrostatic interaction. The ECL behavior of Ru(bpy)32+ immobilized in Nafion/PSS composite film was investigated using tripropylamine (TPA) as an analyte. The detection limit (S/N = 3) for TPA at the Nafion/PSS/Ru composite-modified electrode was estimated to be 3.0 nM, which is 3 orders of magnitude lower than that obtained at the Nafion/Ru modified electrode. The Nafion/PSS/Ru composite film-modified indium tin oxide (ITO) electrode also exhibited good ECL stability. In addition, this kind of immobilization approach was simple, effective, and timesaving.  相似文献   

6.
A biocompatible and uniform interface based on silica nanoparticles derivatized with amino groups has been constructed for the effective immobilization and sensitive sequence-specific detection of calf thymus DNA. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) results showed that a monolayer of silica nanoparticles can be formed on a gold electrode under our experimental conditions using cysteine self-assembly monolayer as binder medium. Electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy (XPS) verified the successful immobilization of DNA on silica-nanoparticle-modified gold electrodes. Quantitative results demonstrated that enhanced immobilization of single-strand DNA (ss-DNA) up to 1.6×10–8 mol cm–2 could be achieved owing to the larger surface area and the special properties of silica nanoparticles. In addition, hybridization experiments demonstrated that the immobilized ss-DNA on silica nanoparticles could specifically interact with complementary DNA in solutions.  相似文献   

7.
Zinc oxide nanoparticles (NanoZnO) uniformly dispersed in chitosan (CHIT) have been used to fabricate a hybrid nanocomposite film onto indium-tin-oxide (ITO) glass plate. Cholesterol oxidase (ChOx) has been immobilized onto this NanoZnO-CHIT composite film using physiosorption technique. Both NanoZnO-CHIT/ITO electrode and ChOx/NanoZnO-CHIT/ITO bioelectrode have been characterized using Fourier transform-infrared (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) techniques, respectively. The ChOx/NanoZnO-CHIT/ITO bioelectrode exhibits linearity from 5 to 300 mg dl−1 of cholesterol with detection limit as 5 mg dl−1, sensitivity as 1.41 × 10−4 A mg dl−1 and the value of Michaelis-Menten constant (Km) as 8.63 mg dl−1. This cholesterol biosensor can be used to estimate cholesterol in serum samples.  相似文献   

8.
Quantitative determination of surface coverage, film thickness and molecular orientation of DNA oligomers covalently attached to aminosilane self‐assembled monolayers has been obtained using complementary infrared and photoelectron studies. Spectral variations between surface immobilized oligomers of the different nucleic acids are reported for the first time. Carbodiimide condensation was used for covalent attachment of phosphorylated oligonucleotides to silanized aluminum substrates. Fourier transform infrared (FTIR) spectroscopy and x‐ray photoelectron spectroscopy (XPS) were used to characterize the surfaces after each modification step. Infrared reflection–absorption spectroscopy of covalently bound DNA provides orientational information. Surface density and layer thickness are extracted from XPS data. The surface density of immobilized DNA, 2–3 (×1013) molecules cm?2, was found to depend on base composition. Comparison of antisymmetric to symmetric phosphate stretching band intensities in reflection–absorption spectra of immobilized DNA and transmission FTIR spectra of DNA in KBr pellet indicates that the sugar–phosphate backbone is predominantly oriented with the sugar–phosphate backbone lying parallel to the surface, in agreement with the 10–20 Å DNA film thickness derived from XPS intensities. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Liying Wang 《Talanta》2009,78(1):265-3377
Based on well-known silver mirror reaction the Ag film was formed on Au film modified by self-assembled monolayer (SAM) of 1,6-hexanedithiol (HDT). The sensitivity of the biosensor based on this Ag/Au film is enhanced compared to that based on Au film. When the surface plasmon resonance (SPR) biosensor based on this Ag/Au film was used to determine human IgG, the range of concentrations of human IgG that could be determined is 0.30-40.00 μg mL−1. The lowest concentration (0.30 μg mL−1) that could be detected was about 8 times lower than that obtained by the biosensor without modification by Ag film (2.50 μg mL−1), which demonstrated that the biosensor based on Ag/Au film could make the resonant wavelength move to longer wavelength following with the sensitivity enhancement of the SPR biosensor.  相似文献   

10.
Jia D  Dai J  Yuan H  Lei L  Xiao D 《Talanta》2011,85(5):2344-2351
Gold nanoparticles-poly(luminol) (Plu-AuNPs) hybrid film and multi-walled carbon nanotubes with incorporated β-cyclodextrin modified glassy carbon electrode (β-CD-MWCNTs/Plu-AuNPs/GCE) was successfully prepared for simultaneous determination of dopamine (DA) and uric acid (UA). The surface of the modified electrode has been characterized by X-ray photo-electron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), field-emission scanning electron microscope (SEM) and transmission electron microscope (TEM). Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) have been used to investigate the β-CD-MWCNTs/Plu-AuNPs composite film. Gold nanoparticles anchored into poly(luminol) film exhibited catalytic activity for DA. MWCNTs with incorporated β-CD can greatly promote the direct electron transfer. In 0.10 M phosphate buffer solution (PBS, pH 7.0), the DPV response of the β-CD-MWCNTs/Plu-AuNPs/GCE sensor to DA is about 8-fold as compared with the Plu-AuNPs/GCE sensor, and the detection limit for DA is about one order of magnitude lower than the Plu-AuNPs/GCE sensor. The steady-state current response increases linearly with DA concentration from 1.0 × 10−6 to 5.6 × 10−5 M with a low detection limit (S/N = 3) of 1.9 × 10−7 M. Moreover, the interferences of ascorbic acid (AA) and uric acid (UA) are effectively diminished. The applicability of the prepared electrode has been demonstrated by measuring DA contents in dopamine hydrochloride injection.  相似文献   

11.
The electrostatic assembly of nanocomposite thin films consisting of alternating layers of an organometallic redox polymer (RP) and oxidoreductase enzymes, glucose oxidase (GOX), lactate oxidase (LOX) and pyruvate oxidase (PYX), was investigated. Multilayer nanostructures were fabricated on gold surfaces by the deposition of an anionic self-assembled monolayer of 11-mercaptoundecanoic acid, followed by the electrostatic attachment of a cationic RP, poly(vinylpyridine Os(bis-bipyridine)2Cl-co-allylamine) (PVP-Os-AA), and anionic oxidoreductase enzymes. Surface plasmon resonance (SPR) spectroscopy, Fourier transform infrared external reflection spectroscopy (FT-IR-ERS) and electrochemistry were employed to characterize the assembly of these nanocomposite films. The surface concentration of GOX was found to be 2.4 ng/mm2 for the first enzyme layer and 1.96 ng/mm2 for the second enzyme layer, while values of 10.7 and 1.3 ng/mm2 were obtained for PYX and LOX, respectively. The apparent affinity constant for GOX adsorption was found to be 8×107 M−1. FT-IR-ERS was used to verify the incorporation of GOX and its conformational stability inside of these nanocomposite thin films. An SPR instrument with a flow-through cell was modified by additions of Ag/AgCl reference and Pt counter electrodes, with the gold-coated SPR surface film serving as the working electrode. This enabled real-time observation of the assembly of sensing components and immediate, in situ electrochemical verification of substrate-dependent current upon the addition of enzyme to the multilayer structure. A glucose-dependant amperometric response with sensitivity of 0.197 μA/cm2/mM for a linear range of 1-10 mM of glucose was obtained. The SPR and FT-IR-ERS studies also showed no desorption of polymer or enzyme from the nanocomposite RP-GOX structure when stored in aqueous environment occurred over the period of 3 weeks, suggesting that decreasing substrate sensitivity with time was due to loss of enzymatic activity rather than loss of film compounds from the nanostructure.  相似文献   

12.
An amperometric biosensor for nitrite was prepared by immobilizing cytochrome c (Cyt c) on a gold electrode that was modified with Nafion and a Cu-Mg-Al layered double hydroxide (Cu-LDH). The Cu-LDH was characterized by Fourier transform infrared spectroscopy and powder X-ray diffraction. The UV-visible spectrum suggests that Cyt c retains its native conformation in the modified film. The direct electrochemical investigation indicated that the composite film represents a good platform for the immobilization of Cyt c as well as an excellent promoter for the electron transfer between Cyt c and the gold electrode. Moreover, the biosensor showed a remarkable bioelectrocatalytic activity for the oxidation of nitrite with a linear range from 0.75 to 123 μM. The detection limit is 2?×?10?7 M (S/N?=?3). The biosensor was successfully applied to the determination of nitrite in food samples.  相似文献   

13.
In this work, we investigated the fabrication of surface plasmon resonance (SPR) nanosensor using gold nanoparticles (AuNPs) chemisorbed onto self assembled monolayer of 10-(3-amino phenoxy) decane-1-thiol on gold substrate. The fabrication process of SPR nanosensor was characterized using different techniques such as infrared reflection-absorption spectra (IRRAS), xX-ray photoelectron spectroscopy (XPS), and atomic force microscope (AFM). The fabricated SPR nanosensor was used for detection of Cu2+ in an aqueous solution using surface plasmon resonance refractometer. The results confirm the fabrication of new SPR nanosensor. The fabricated SPR nanosensor showed a good activity toward the detection of Cu2+. The detection of Cu2+ in an aqueous solution using the fabricated SPR nansensor was enhanced in the presence of gold nanoparticles.  相似文献   

14.
Xiang C  Zou Y  Sun LX  Xu F 《Talanta》2007,74(2):206-211
A robust and effective nanohybrid film based on gold nanoparticles (GNPs)/chitosan (Chit)/multi-walled carbon nanotubes (MWNTs) was prepared by a layer-by-layer self-assembly technique. Cytochrome c (Cyt c) was successfully immobilized on the nanohybrid film modified glassy carbon (GC) electrode by cyclic voltammetry. The direct electron transfer between Cyt c and the modified electrode was investigated in detail. Cyt c shows a couple of quasi-reversible and well-defined cyclic voltammetry peaks with a formal potential (E0′) of −0.16 V (versus Ag/AgCl) in pH 7.0 phosphate buffer solution (PBS). The Cyt c/GNPs/Chit/MWNTs modified GC electrode gives an improved electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2). The sensitivity is 92.21 μA mM−1 cm−2 and the calculated apparent Michaelis-Menten constant () is 0.791 mM, indicating a high-catalytic activity of Cyt c. The catalysis currents increase linearly to the H2O2 concentration in a wide range of 1.5 × 10−6 to 5.1 × 10−4 M with a correlation coefficient 0.999. The detection limit is 9.0 × 10−7 M (at the ratio of signal to noise, S/N = 3). Moreover, the modified electrode displays rapid response (5 s) to H2O2, and possesses good stability and reproducibility.  相似文献   

15.
Conductive composite film which contains nafion (NF) doped multi-walled carbon nanotubes (MWCNTs) along with the incorporation of poly(malachite green) (PMG) has been synthesized on glassy carbon electrode (GCE), gold and indium tin oxide (ITO) electrodes by potentiostatic methods. The presence of MWCNTs in the composite film (MWCNTs-NF-PMG) enhances surface coverage concentration (Γ) of PMG to ≈396%, and increases the electron transfer rate constant (ks) to ≈305%. Similarly, electrochemical quartz crystal microbalance study reveals the enhancement in the deposition of PMG at MWCNTs-NF film. The surface morphology of the composite film deposited on ITO electrode has been studied using scanning electron microscopy (SEM) and scanning tunneling microscopy (STM). These two techniques reveal that the PMG incorporated on MWCNTs-NF film. The MWCNTs-NF-PMG composite film also exhibits promising enhanced electrocatalytic activity towards the simple aliphatic alcohols such as methanol, ethanol and propanol. The electroanalytical responses of analytes at NF-PMG and MWCNTs-NF-PMG films were measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). From electroanalytical studies, well defined voltammetric peaks have been obtained at MWCNTs-NF-PMG composite film for methanol, ethanol and propanol at Epa = 609, 614 and 602 mV respectively. The sensitivity of MWCNTs-NF-PMG composite film towards methanol, ethanol and propanol in CV technique are 0.59, 0.36 and 0.92 μA mM−1 cm−2 respectively, which are higher than NF-PMG film. Further, the sensitivity values obtained using DPV are higher than the values obtained using CV technique.  相似文献   

16.
A robust and effective composite film based on gold nanoparticles (GNPs)/room temperature ionic liquid (RTIL)/multi-wall carbon nanotubes (MWNTs) modified glassy carbon (GC) electrode was prepared by a layer-by-layer self-assembly technique. Cytochrome c (Cyt c) was successfully immobilized on the RTIL-nanohybrid film modified GC electrode by electrostatic adsorption. Direct electrochemistry and electrocatalysis of Cyt c were investigated. The results suggested that Cyt c could be tightly adsorbed on the modified electrode. A pair of well-defined quasi-reversible redox peaks of Cyt c was obtained in 0.10 M, pH 7.0 phosphate buffer solution (PBS). RTIL-nanohybrid film showed an obvious promotion for the direct electron transfer between Cyt c and the underlying electrode. The immobilized Cyt c exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis currents increased linearly to the H2O2 concentration in a wide range of 5.0 × 10−5– 1.15 × 10−3 M. Based on the multilayer film, the third-generation biosensor could be constructed for the determination of H2O2.  相似文献   

17.
The free energy change (Delta G degrees ) for the unfolding of immobilized yeast iso-1-cytochrome c (Cyt c) at nanoassemblies was measured by surface plasmon resonance (SPR) spectroscopy. Data show that SPR is sensitive to protein conformational changes, and protein solid interface exerts a major influence on bound protein stability. First, Cyt c was self-assembled on the Au film via the single thiol of Cys-102. Then, crystalline sheets of layered alpha-Zr(O(3)POH)(2).H(2)O (alpha-ZrP) or Zr(O(3)PCH(2)CH(2)COOH)(2).xH(2)O (alpha-ZrCEP) were adsorbed to construct alpha-ZrP/Cyt c/Au or alpha-ZrCEP/Cyt c/Au nanoassemblies. The construction of each layer was monitored by SPR, in real time, and the assemblies were further characterized by atomic force microscopy and electrochemical studies. Thermodynamic stability of the protein nanoassembly was assessed by urea-induced unfolding. Surprisingly, unfolding is reversible in all cases studied here. Stability of Cyt c in alpha-ZrP/Cyt c/Au increased by approximately 4.3 kJ/mol when compared to the unfolding free energy of Cyt c/Au assembly. In contrast, the protein stability decreased by approximately 1.5 kJ/mol for alpha-ZrCEP/Cyt c/Au layer. Thus, OH-decorated surfaces stabilized the protein whereas COOH-decorated surfaces destabilized it. These data quantitate the role of specific functional groups of the inorganic layers in controlling bound protein stability.  相似文献   

18.
Composites of graphene (oxide) (GO) and first-row transition-metal cations (Co2+, Ni2+, Mn2+, Fe2+) are prepared by mixing GO and aqueous metal salt solutions. The amount of metal cation bound to GO nanosheets is calculated by using inductively coupled plasma mass spectrometry (ICP-MS) and the possible binding sites of the metals are investigated by means of attenuated total reflectance infrared (ATR-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. Electrodes loaded with the metal/GO composites are prepared by a simple drop-casting technique without any binders or conductive additives. The effect of electrochemical reduction on the structure of the composite electrodes is investigated by Raman spectroscopy, XPS, X-ray diffraction (XRD) analysis, and field emission scanning electron microscopy (FESEM). A detailed electrochemical characterization is performed for the utilization of the composite electrodes for electrochemical capacitors and possible oxygen reduction reaction electrocatalysts by cyclic voltammetry (CV) and rotating disk electrode measurements. The highest areal capacitance is achieved with the as-deposited Fe/GO composite (38.7 mF cm−2 at 20 mV s−1). In the cyclic stability measurements, rCo/GO, rNi/GO, rMn/GO, and rFe/GO exhibit a capacitance retention of 44, 1.1, 73, and 87 % after 3000 cycles of CV at 100 mV s−1, respectively.  相似文献   

19.
Due to the extraordinary versatility of the perovskite structure in accommodating different dopant ions in its structure, in recent years a huge number of multifunctional perovskite materials have been developed. In this work we aim to obtain high temperature-stable and huge dielectric constant materials for supercapacitors by doping divalent Mg2+ and trivalent Sb3+ ions into the octahedral sites, and divalent Sr2+ ions into the dodecahedral sites of lead zirconate-titanate perovskite. The resulting (Pb0.95Sr0.05)(Zr0.425Ti0.45Mg0.042Sb0.083)O3-δ is examined by X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM), dielectric spectroscopy (DS) and resonance dielectric spectroscopy (RDS) in order to correlate composition, local structure, ion valence and chemical environment of the doped material with the dielectric properties. HRTEM evidences that a composite structure, with co-existent ferroelectric domains and relaxor nanodomains, is formed by doping. XPS shows that Sb3+ and Mg2+ substitute for the Ti4+/Zr4+ ions, pointing to these strong defects as the main cause for the appearance of the relaxor phase. DS and RDS found that the ferroelectric lead zirconate-titanate transforms into a re-entrant relaxor-ferroelectric composite with a huge dielectric constant of about 104 which remains stable (within ±10%) in the high temperature range up to 250 °C, pointing to this mechanism of relaxor phase re-entrance below the normal ferroelectric phase transition, as being responsible for the enhancement.  相似文献   

20.
The aim of this study is to elaborate a simple and sensitive electrochemical immunoassay using ferrocenecarboxylic (Fc-COOH)-doped silica nanoparticles (SNPs) as an immobilized affinity support for cancer antigen 15-3 (CA 15-3) detection. The Fc-COOH-doped SNPs with redox-active were prepared by using a water-in-oil microemulsion method. The use of colloidal silica could prevent the leakage of Fc-COOH and were easily modified with trialkoxysilane reagents for covalent conjugation of CA 15-3 antibodies (anti-CA 15-3). The Fc-COOH-doped SNPs were characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The fabrication process of the electrochemical immunosensor was demonstrated by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Under optimal conditions, the developed immunosensor showed good linearity at the studied concentration range of 2.0-240 U mL−1 with a coefficient 0.9986 and a detection limit of 0.64 U mL−1 at S/N = 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号