首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes a new procedure for the determination of Sb (III) and Sb (V) by differential pulse adsorptive stripping voltammetry (DPAdSV) using pyrogallol as a complexing agent. The selection of the experimental conditions was made using experimental design methodology. The detection limits obtained were 1.03 × 10−10 and 9.48 × 10−9 mol dm−3 for Sb (III) and Sb (V), respectively.In order to carry out the simultaneously determination of both antimony species a partial least squares regression (PLS) is employed to resolve the voltammetric signals from mixtures of Sb (III) and Sb (V) in the presence of pyrogallol. The relative error in absolute value is less than 0.5% when concentrations of several mixtures are calculated. Moreover, the solution is analyzed for any possible effects of foreign ions. The procedure is successfully applied to the speciation of antimony in pharmaceutical preparations and water samples.  相似文献   

2.
Arsenic compounds were determined in six reference materials of biological origin. None of them has yet been certified for arsenic compounds but some are in the process of certification; for most of these reference materials indicative literature values are available. Eight commonly used arsenic standards were used for quantification using a recently developed hyphenated speciation system comprising high performance liquid chromatography (HPLC) and atomic fluorescence spectrometry (AFS), interfaced via a UV-photoreactor and a hydride generation (HG) unit. Absolute detection limits were ca. 0.2 and 0.4 ng As for separation on anion and cation exchange columns, respectively. Our results agree well with indicative literature values which were generated by different authors using various separation and detection methods. The HPLC-(UV)-HG-AFS system validated in this way is suitable for quantification of eight arsenic compounds. Moreover, the system is capable of separation of at least six more compounds in the mentioned reference materials, of which two could be attributed to arsenosugars (OH and phosphodiester form) but due to the lack of standards, quantification was not possible. For accurate and extensive speciation analysis the availability of certified reference materials and standards for arsenic compounds should be promoted.  相似文献   

3.
This paper describes a procedure for the speciation of antimony by UV-vis spectroscopy using pyrogallol as complexing agent. A partial least squares (PLS) regression was performed to resolve highly overlapping spectrophotometric signals obtained from mixtures of Sb(III) and Sb(V). The relative error in absolute value was less than 5% when concentrations of several mixtures were calculated. The minimum concentration determined was 3.96 × 10−5 mol dm−3 and 3.98 × 10−5 mol dm−3 for Sb(V) and Sb(III), respectively. The analysis of the possible effect of the presence of foreign ions in the solution was performed and the procedure was successfully applied to the speciation of antimony in pharmaceutical preparations and aqueous samples.  相似文献   

4.
Erdem A  Eroğlu AE 《Talanta》2005,68(1):86-92
A selective matrix removal/separation/enrichment method, utilizing a microcolumn of a chelating resin with SH functional groups (Duolite GT-73), was proposed for the determination of Sb(III) in waters by segmented flow injection-hydride generation atomic absorption spectrometry (SFI-HGAAS). The resin was selective to Sb(III) at almost all pH and acidity values employed, whereas Sb(V) was not retained at all and could be determined after a pre-reduction step with l-cysteine. Spike recoveries were tested at various concentration levels in different water types and were found to vary between 85 and 118%. Accuracy of the proposed methodology was checked by analyzing a standard reference material and a good correlation was found between the determined (13.3 ± 1.1 μg l−1) and the certified value (13.79 ± 0.42 μg l−1). The method was applied to several bottled drinking water samples for antimony determination with and without preconcentration and none of the samples were found to contain antimony above the permissible level (5 μg l−1). The characteristic concentration (the concentration of the analyte corresponding to an absorbance of 0.0044) was 0.55 μg l−1 and the 3 s limit of detection (LOD) based on five times preconcentration was 0.06 μg l−1. The applicability of the microcolumn separation/preconcentration/matrix removal method for flow injection systems was also demonstrated.  相似文献   

5.
A fast extraction procedure has been developed for Sb(III) and Sb(V) oxoanions speciation in airborne particulate matter samples. Different extraction media (diammonium tartrate, hidroxilammonium clorhidrate, citric acid + ascorbic acid, phosphoric acid and citrate solutions) were tried, with assistance of an ultrasonic probe. The operation power and time of extraction were also optimized. The higher extraction recoveries were obtained with a 100 mmol L−1 hidroxilammonium clorhidrate aqueous solution assisted by the ultrasound probe operated at 50 W during 3 min. The extracts were analyzed by HPLC-HG-AFS. The chromatographic separation of Sb(III) and Sb(V) was also optimized using diammonium tartrate and phthalic acid as mobile phases. The separation of both Sb species was performed in less than 3 min under isocratic conditions, using a 200 mmol L−1 diammonium tartrate solution. The proposed extraction procedure and the HPLC-HG-AFS instrumental coupling have been successfully applied to airborne particulate matter samples, with high Sb content, collected in heavy traffic streets from Buenos Aires (Argentina). The results showed the presence of both Sb species at similar concentrations in the ng m−3 level. The extraction yield was higher than 90% for all the analyzed samples.  相似文献   

6.
In the present paper, we develop a methodology for antimony speciation in occupationally exposed human urine samples by high-performance liquid chromatography with hydride generation atomic fluorescence spectrometry (HPLC-HG-AFS). The methodology was applied to the determination of Sb(V), Sb(III) and (CH3)3SbCl2 (TMSb(V)). Retention time of Sb(V), Sb(III) and TMSb(V) species were 0.88, 2.00 and 3.61 and the detection limits were 0.18, 0.19 and 0.12 μg L− 1, for 100 μL loop injection respectively which is considered useful for elevated/occupationally exposed urine samples. Studies on the stability of antimony species in urine samples on the function of the elapsed time of preservation (4 °C) and storage (− 70 °C) were performed. Results revealed that antimony species are highly unstable at − 70 °C, probably due to co-precipitation reaction. In this kind of matrix transformation during preservation time may occur, such as oxidation of Sb(III) to Sb(V) and transformation into species that do not elute from the column. EDTA shows that it is able to stabilize Sb(III) for more than one week of preservation time at 4 °C avoiding co-precipitation during storage at − 70 °C. Finally the methodology was applied to occupationally exposed human urine samples. 25% of specimens present antimony levels (Sb(V)) of more than 5 μg L− 1.  相似文献   

7.
《Analytical letters》2012,45(18):2921-2935
Speciation of Sb(III) and Sb(V) was investigated using hydride generation with the selective formation of stibine from Sb(III). A continuous flow system using a homemade gas-liquid separator with inductively coupled plasma optical emission spectrometry was employed. The conditions and concentrations of NaBH4, HCl, citric acid, and KI were optimized to obtain limits of detection of 0.05 for Sb(III) and 0.11 µg L?1 for total Sb without preconcentration. An attractive sampling rate of 26 analyses h?1 was obtained, suggesting application for routine analysis. The method was employed for the determination of Sb(III) and total Sb in bottled drinking water, and recovery values between 82.0 and 98.8% with relative standard deviation lower than 6.2% were observed, demonstrating appropriate accuracy and precision.  相似文献   

8.
Speciation analysis of Sb(III) and Sb(V) in a soil sample was performed through extraction and on-line isotope dilution concentration determination after a chromatographic separation. The total Sb concentration found in a through traffic contaminated soil sample was (4.17 μg g−1, 0.3 μg g−1 SD, n=6). It was determined using ICP-MS after soil digestion using the sodium peroxide sintering method. The optimized extraction procedure for speciation analysis was carried out using 100 mmol L−1 citric acid at pH 2.08 by applying an ultrasonic bath for 45 min at room temperature. The effects of citric acid concentration (0–500 mmol L−1), pH (1–6), and temperature (30–60°C) on inorganic antimony species distribution in the examined sample were studied and optimized. The separation of Sb(III) and Sb(V) was achieved using an anion exchange column (PRP-X100) and 10 mmol L−1 EDTA and 1 mmol L−1 phthalic acid at pH 4.5 as a mobile phase. The eluent from the HPLC was mixed with an enriched (94.2%) 123Sb spike solution that was pumped by a peristaltic pump with a constant flow rate (0.5 mL min−1) in a three-way valve. The blend passed directly to the Conikal nebulizer of the ICP-MS. By using the above extraction procedure and methodology, 43.2% Sb(V) (2.9% RSD, n=3) and 6.0% Sb(III) (1.3% RSD, n=3) of total Sb found in the sample could be detected. The detection limits achieved by the proposed method were 20 ng L−1 and 65 ng L−1 for Sb(V) and Sb(III), respectively. The precision, evaluated by using RSD with 100 ng L−1 calibration solutions, was 2.7% and 3.2% (n=6) for Sb(V) and Sb(III), respectively, in aqueous solutions.  相似文献   

9.
Diperoxo chromium oxide is produced by reaction of hydrogen peroxide on chromium(VI). Diperoxo chromium creates a complex with ethyl acetate, while chromium(III) remains in an unchanged form in the aqueous phase. By this means chromium(VI) can be extracted into ethyl acetate from the aqueous phase. The optimal conditions of Cr(III)-Cr(VI) separation, as well as the chromium content of the ethyl acetate phase were determined with graphite furnace atomic absorption spectrometry. In the second extraction of Cr(VI) from ethyl acetate back into water phase an additional preconcentration of chromium(VI) can be carried out. The detection limit (3σ) of the developed method found to be 200 ng dm− 3 for the first extraction and 50 ng dm− 3 after using the twofold extraction. In consequence of the matrix free ethyl acetate phase after the first extraction, with this separation a really extensive preconcentration of chromium(VI) can be realized.  相似文献   

10.
建立了稻米中4种砷元素形态的液相色谱-原子荧光光谱联用法(LC-AFS),样品用0.15mol/L的硝酸溶液微波提取50min,提取液经离心分离后,采用Hamilton PRP-X100色谱柱,45mmol/L KH2PO4-5mmol/L Na2HPO4缓冲液为流动相,砷形态4个组分能够在7min内达到基线分离,且无需调pH。优化了氢化物发生条件,使用了更低浓度的载流和还原剂。方法学实验结果表明,各组分在2~10ng/mL范围内线性关系良好,相关系数为0.9988~0.9998,各组分的检出限分别为0.29 ng/mL、0.47 ng/mL、0.62 ng/mL和1.16 ng/mL;各组分峰面积的相对标准偏差均低于3.11%;加标回收率为85.3%~112.8%;对稻米标准物质的分析测定结果表明该方法定值准确。最后,与GB 5009.11-2014中使用的提取及测量条件进行对比,表明该方具备法快速、环保、高效的特点。  相似文献   

11.
This research attempted to study the adsorption of Sb(III) and Sb(V) on bentonite using batch experiments. The effects of reaction time, temperature, initial Sb concentration, and competitive anions at different concentrations on the adsorption of Sb(III) and Sb(V) were investigated. Kinetic studies suggested that the adsorption equilibriums for both Sb(III) and Sb(V) were reached within 24 h. The desorption of Sb adsorbate on the bentonite was observed following Sb(III) adsorption, probably due to the oxidation of Sb(III) on the bentonite surface and subsequent desorption of Sb(V). In addition, oxidation of Sb(III) can occur in the solution medium also, which decreases the concentration of Sb(III) in the solution thereby driving the equilibrium in the direction of desorption from the surface. The adsorption data at three temperatures were successfully modeled using Langmuir (r2 > 0.82) and Freundlich (r2 > 0.99) isotherms. The thermodynamic parameters (ΔG0, ΔH0, and ΔS0) were calculated from the temperature dependence, suggesting that the adsorption process of Sb(III) is spontaneously exothermic, while the adsorption process of Sb(V) is spontaneously endothermic. Competitive anions such as , , and hardly affected the Sb(III) adsorption on bentonite, while and could compete with for adsorption sites. The competition between and on adsorption sites was presumably due to the formation of surface complexes and the surface accumulation or precipitation of on bentonite surface.  相似文献   

12.
A rapid, high sensitivity method has been developed for the determination of As(III), As(V), Sb(III) and Sb(V) in milk samples by using hydride generation atomic fluorescence spectrometry. The method is based on the leaching of As and Sb from milk through the sonication of samples with aqua regia followed by direct determination of the corresponding hydrides both before and after reduction with KI. It was confirmed by recovery experiments on spiked commercially available samples that neither the reduced nor the oxidized forms of the elements under study or mixtures of the two oxidation states were modified by the room temperature sample treatment with aqua regia. The methodologies developed provided 3σ limit of detection values of 8.1, 10.3, 5.4 and 7.7 ng l−1 for As(III), As(V), Sb(III) and Sb(V) in the diluted samples. Average relative standard deviation values of 5.7, 5.5, 8.2 and 4.7% were found for determination of As(III), As(V), Sb(III) and Sb(V) in commercially available samples of different composition and origin containing from 3.5 to 13.6 ng g−1 total As and from 4.9 to 11.8 ng g−1 total Sb, it being confirmed that As(V) and Sb(V) are the main species present in the samples analyzed (62±5 and 73±5%, respectively). The time required to determine As and Sb species in milk involves 10 min sonication and 30 min prereduction but these steps can be carried out for several sample simultaneously. Additionally the fluorescence measurement step involves less than 20 min for three replicates of all the four measurements required. So, in less than 2 h it is possible to determine the content of As(III), As(V), Sb(III) and Sb(V) in four samples.  相似文献   

13.
A new method was developed for simultaneous determination of trace arsenic and antimony in Chinese herbal medicines by hydride generation-double channel atomic fluorescence spectrometry with a Soxhlet extraction system and an n-octanol-water extraction system, respectively. The effects of analytical conditions on the fluorescence intensity were investigated and optimized. A water-dissolving and methanol-water-dissolving capability were compared. The contents of different species in five Chinese herbal medicines and their decoctions were analyzed. The concentration ratios of n-octanol-soluble As or Sb to water-soluble As or Sb were related to the kinds of medicine and the acidity of the decoction. Soxhlet extraction was found to be an effective method for plants pretreatment for determination of arsenic and antimony species in Chinese herbs; the interferences of coexisting ions were evaluated. The proposed method has the advantages of simple operation, high sensitivity and high speed, with 3σ detection limits of 0.094 μg g−1 for As(III), 0.056 μg g−1 for total As, 0.063 μg g−1 for Sb(III) and 0.019 μg g−1 for total Sb in a 1.0 g of the sample.  相似文献   

14.
Mandiwana KL  Panichev N 《Talanta》2006,70(5):1153-1156
Vanadium(IV) and vanadium(V) were easily separated from each other in the same plant sample and be determined independently by ETAAS (electrothermal atomic absorption spectrometry). This was achieved by treating the sample with 1 M (NH4)2HPO4 which transfer only insoluble V(V) species into solution leaving V(IV) species in the solid part of the sample solution. V(IV) was then transferred into solution by ashing the precipitates and dissolving them in dilute acid. Statistical evaluations indicate that the sum of the concentrations of V(IV) and V(V) species is the same as the total concentration of vanadium determined by an independent method from the same plant sample at 95% level of confidence.

The maximum concentrations for V(V) and total vanadium in plants around the vanadium mine were found to be 24.3 and 350 μg g−1, respectively.  相似文献   


15.
A simple method is described for the rapid and reliable determination of ultratrace concentrations of Sb(III) and Sb(V) in seawater by differential pulse anodic stripping voltammetry. It is based on the well-known dependence of Sb(III)/Sb(V) voltammetric response on acidity conditions. Under our optimised conditions (0.5 mol l−1 HCl for Sb(III) and 5 mol l−1 HCl for total Sb, respectively): (i) a detection limit of 11 ng l−1 is obtained for a 10 min deposition time; (ii) no prior elimination of organic matter is needed; and (iii) antimony can be determined in the presence of natural copper levels. Particular care has been taken in order to understand the chemical processes taking place in all the solutions and reactions involved in the sampling and measuring procedures. Our results revealed the need to consider (i) the effect of photooxydation of synthetic and seawater samples on Sb speciation; and (ii) the stability of Sb(III) both in seawater samples and in the analytical solutions.  相似文献   

16.
In the present study, and taking into account the microanalytical capability of total reflection X-ray spectrometry (TXRF), we explored the possibilities of hollow fibre liquid-phase microextraction (HF-LPME) and dispersive liquid–liquid microextraction (DLLME) combined with TXRF for the determination of low amounts of inorganic Sb species in waters.  相似文献   

17.
燃煤电厂煤中砷(As)的形态在燃烧过程中不可避免地会发生转化。煤及其副产物中砷的形态与人体健康和环境安全密切相关,亟待鉴别。然而目前针对煤燃烧相关产物中砷形态的前处理手段和分析方法尚缺乏。本研究采用高效液相色谱-氢化物发生-原子荧光光谱法(HPLC-HG-AFS)成功测定了电厂煤、粉煤灰和石膏中砷的形态,优化了仪器参数、提取试剂和前处理方法(超声和微波辅助)。优化后,无机砷的分离时间缩短至7 min,As(Ⅲ)和As(V)的检出限分别为1.8 ng/g和4.6 ng/g。砷形态的高效提取剂为1.0 mol/L 磷酸和0.1 mol/L 抗坏血酸的混合溶液。微波辅助(2000 W、80 ℃、40 min)和超声辅助(40 kHz、20 ℃、40 min)分别是煤/粉煤灰和石膏样品中砷形态的最佳提取方法。在微波和超声波辅助提取条件下,As(Ⅲ)/As(V)的回收率分别为95.8%/104.5%和90.6%/89.7%。样品分析结果表明,煤中砷主要以As(V)形式存在,As(Ⅲ)所占比例很小,而在粉煤灰和石膏中只观察到As(V)。该研究揭示了As(Ⅲ)向As(V)的转化是气态砷捕获的关键,可以为控制电厂砷排放提供科学依据。  相似文献   

18.
A sensitive and selective protocol for the extraction of all forms of Cr(VI) from solid materials followed by determination by catalytic adsorptive stripping voltammetry has been elaborated. Cr(VI) was leached to a solution with 0.2 mol L?1 (NH4)2SO4/NH4OH+0.1 mol L?1 EDDS (pH 9.5) and simultaneously Cr(III) was transferred to a nonactive electrochemical complex with EDDS. The method allows for Cr(VI) determination in solid samples containing even a 1000–2000 fold excess of extractable Cr(III) without its noticeable influence. The effects of several experimental variables such as the composition and pH of the extractant, the time and temperature of the solid sample mixing with the extractant were studied. At the optimized conditions more than 95% of total Cr(VI) recoveries from solid samples were achieved. The validation of the proposed procedure was carried out by Cr(VI) determination in certified reference material CRM 019 Ash, spiked and unspiked with Cr(III), and by comparing the obtained results with those obtained using other common extraction procedures.  相似文献   

19.
A new method for the speciation of butyltin compounds by solid phase extraction and direct injection using gas chromatography-mass spectrometry (GC/MS) is described. The compounds were complexed with sodium diethyldithiocarbamate and retained on a C60 sorbent column. The neutral chelates of butyltin compounds were eluted with ethyl acetate containing NaBPr4 as derivatising reagent. The main analytical figures of merit of the proposed method for 10 ml of sample are: linear range 0.2-35 ng/g expressed as Sn; limits of detection, 0.07, 0.09 and 0.10 ng/g as Sn for monobutyltin, dibutyltin and tributyltin, respectively. No interferences from metal ions such as Zn2+, Fe3+, Sb3t, Pb2+, Ni2+ and Mn2+ were observed in the determination of organotin compounds. The validation of method was performed out by the analysis of a standard reference sediment (CRM 462). The method was also applied to the determination of butyltin compounds in marine sediment samples.  相似文献   

20.
A new method was developed for the simultaneous speciation of inorganic arsenic and antimony in water by on-line solid-phase extraction coupled with hydride generation-double channel atomic fluorescence spectrometry (HG-DC-AFS). The speciation scheme involved the on-line formation and retention of the ammonium pyrrolidine dithiocarbamate complexes of As(III) and Sb(III) on a single-walled carbon nanotubes packed micro-column, followed by on-line elution and simultaneous detection of As(III) and Sb(III) by HG-DC-AFS; the total As and total Sb were determined by the same protocol after As(V) and Sb(V) were reduced by thiourea, with As(V) and Sb(V) concentrations obtained by subtraction. Various experimental parameters affecting the on-line solid-phase extraction and determination of the analytes species have been investigated in detail. With 180 s preconcentration time, the enrichment factors were found to be 25.4 for As(III) and 24.6 for Sb(III), with the limits of detection (LODs) of 3.8 ng L− 1 for As(III) and 2.1 ng L− 1 for Sb(III). The precisions (RSD) for five replicate measurements of 0.5 μg L−1 of As(III) and 0.2 μg L−1 of Sb(III) were 4.2 and 4.8%, respectively. The developed method was validated by the analysis of standard reference materials (NIST SRM 1640a), and was applied to the speciation of inorganic As and Sb in natural water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号