首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel method for the separation and preconcentration of Se(IV)/ Se(VI) with algae and determination by graphite furnace atomic absorption spectrometry (GFAAS) has been developed. The Se(VI) is extracted with algae from the solution containing Se(IV)/Se(VI) at pH 5.0, and the remaining Se(IV) is then preconcentrated pH 1.0. The detection limits (3σ, n = 11) of 0.16 μg L–1 for Se(IV) and 0.14 μg L–1 for Se(VI) are obtained using 40 mL of solution. At the 2.0 μg L–1 level the relative standard deviation is 2.6% for Se(IV) and 2.3% for Se(VI). The method has been applied to the determination of Se(IV)/Se(VI) in sediment and water samples. Analytical recoveries of Se(IV) and Se(VI) added to samples are ?97 ± 5% and 102 ± 6% (95% confidence), respectively. Received: 10 February 1999 / Revised: 21 June 1999 / /Accepted: 22 June 1999  相似文献   

2.
A novel method for the separation and preconcentration of Se(IV)/ Se(VI) with algae and determination by graphite furnace atomic absorption spectrometry (GFAAS) has been developed. The Se(VI) is extracted with algae from the solution containing Se(IV)/Se(VI) at pH 5.0, and the remaining Se(IV) is then preconcentrated pH 1.0. The detection limits (3σ, n = 11) of 0.16 μg L–1 for Se(IV) and 0.14 μg L–1 for Se(VI) are obtained using 40 mL of solution. At the 2.0 μg L–1 level the relative standard deviation is 2.6% for Se(IV) and 2.3% for Se(VI). The method has been applied to the determination of Se(IV)/Se(VI) in sediment and water samples. Analytical recoveries of Se(IV) and Se(VI) added to samples are ¶97 ± 5% and 102 ± 6% (95% confidence), respectively.  相似文献   

3.
Kuroda R  Yoshikuni N 《Talanta》1975,22(1):81-84
Te(IV) can be separated from Te(VI), Se(IV) and Se(VI) by adsorption of Te(IV) on a DEAE-cellulose column from a mixed 1M hydrochloric acid-acetic acid solution (1:9, v/v). This allows a selective separation of Te (IV) from the other three species in widely different mole ratios.  相似文献   

4.
A simple and sensitive method for the selective determination of Se(IV) and Se(VI) in natural water and sludge samples through an adsorptive process on a nanometer-sized TiO(2) (anatase) was developed. The conditions for quantitative and reproducible preconcentration, elution, and subsequent GFAAS determination were established. The proposed method gave a concentration factor of 50 for a 100 mL sample volume, characterized by high precision, high reproducibility, and direct determination of Se(IV)/Se(VI). The detection limits (3 sigma, n=11) were 4.7ng L(-1) for Se(IV) and 6.3ng L(-1) for Se(VI); the precision (relative standard deviation) was 0.7% for Se(IV) and 0.9% for Se(VI) at the 0.5microg L(-1) level.  相似文献   

5.
The role of metallic matrix modifiers in AAS is considered; for elements reduced, together with modifier elements, during ashing and the beginning of the atomization process, the thermodynamic activity and melting points of the alloys formed are important. For Mg2+, prevention of the effects of halide ions is considered, as is also the behaviour of buffer and/or carrier in emission spectrometric analysis of the other alkali and alkaline earths.  相似文献   

6.
An on-line flow injection system has been developed for the selective determination of Se(IV) and Se(VI) in citric fruit juices and geothermal waters by hydride generation atomic absorption spectrometry with microwave-aided heating prereduction of Se(VI) to Se(IV). The samples and the prereductant solutions (4 mol l−1 HCl for Se(IV) and 12 mol l−1 HCl for Se(VI)) which circulated in a closed-flow circuit were injected by means of a time-based injector. This mixture was displaced by a carrier solution of 1% v/v of hydrochloric acid through a PTFE coil located inside the focused microwave oven and mixed downstream with a borohydride solution to generate the hydride. The linear ranges were 0–120 and 0–100 μg l−1 of Se(IV) and Se(VI), respectively. The detection limits were 1.0 μg l−1 for Se(IV) and 1.5 μg l−1 for Se(VI). The precision (about 2.0–2.5% RSD) and recoveries (96–98% for Se(IV) and 94–98% for Se(VI)) were good. Total selenium values were also obtained by electrothermal atomic absorption spectrometry which agreed with the content of both selenium species. The sample throughput was about 50 measurements per hour. The main advantage of the method is that the selective determination of Se(IV) and Se(VI) in citric fruit juices and geothermal waters is performed in a closed system with a minimum sample manipulation, exposure to the environment, minimum sample waste and operator attention.  相似文献   

7.
Ferri T  Frasconi M 《Annali di chimica》2006,96(11-12):647-656
This paper deals with determination of selenium and analysis of its speciation in some Italian mineral waters. Selenium was determined by differential pulse cathodic stripping voltammetry (DPCSV) even if square wave cathodic stripping voltammetry (SWCSV) was also taken into consideration. The selenium determined in the mineral waters here investigated is not over 600 ng L(-1); in three samples, it was found below the detection limit. Analysis of speciation revealed that Se(VI) is the highly prevailing form present: only two of the examined samples revealed a detectable amount (few ng L(-1)) of Se(IV). DPCSV made possible to detect, in two of the samples, the presence of a specie(s) able to interact with Se(IV). The apparent interaction constant for the adduct formation was evaluated and the species concentration determined. However, the nature of such compound(s) remains unknown.  相似文献   

8.
In this study a flow injection (FI) system used in conjunction with hydride generation (HG), atomic absorption spectrometry (AAS) and microwave (MW) aided pre-reduction of selenite (Se(IV)) to selenate (Se(IV)) with HCl:HBr has been developed in order to differentiate both inorganic selenium species. As full control of the MW reduction step is possible, the experimental approach allows the use of milder acidic conditions (10% v/v of HCl and HBr) than those conventionally accomplished with hydrochloric acid alone (≥50% v/v). Experimental parameters were optimized by the univariate optimization method. In either case, the linear range was from 1.0 to 30 μg l−1. The detection limits based on 3σ of the blank signal were 0.25 μg l−1 for Se(IV) and 0.30 μg l−1 for Se(VI). The reproducibility, about 3% RSD and recoveries of different amounts of Se(VI) and Se(IV) added to water and orange juice samples (97–103%) were good. The main advantage of the proposed method is that the sequential determination of Se(IV) and Se(VI) is performed at a high sampling frequency (ca. 50 samples per h) in a closed system without Se losses, and with a minimum sample waste, operator attention, and sample manipulation.  相似文献   

9.
Journal of Radioanalytical and Nuclear Chemistry - The diffusion of Re(VII), Se(IV) and Cr(VI) in compacted Gaomiaozi bentonite was conducted by an integrated diffusion setup. The effective...  相似文献   

10.
This paper reports the results of an optimisation study for a procedure to determine the total selenium and its inorganic species, Se(IV) and Se(VI) using atomic absorption spectrometry combined with hydride generation and in-situ trapping of the analyte on the inner walls of the graphite tube. With the use of the proposed modification, a detection limit (3σ) of 0.018 ng/ml is achieved. This paper presents exemplary results, according to the proposed procedure, for selenium determination in samples of marine water. The concentrations of selenium in the samples ranged from <0.02 ng/ml to 0.16ng/ml of Se(IV) and from <0.02 ng/ml to 0.10 ng/ml of Se(VI).  相似文献   

11.
An on-line system is proposed consisting of an anion-exchange chromatographic column, microwave-induced thermooxidation of trimethylselenium in the presence of persulphate, and microwave-induced thermoreduction of Se(VI) to Se(IV) in HCl medium, followed by hydride generation and atomic absorption for the determination of trimethylselenium (TMeSe), Se(IV) and Se(VI). Trimethylselenium is eluted in the dead volume of an anion-exchange column (Hamilton PRP-X-100), before elution of Se(IV) and Se(VI). Optimum chromatographic conditions have been obtained using 100 mmol L–1 phosphate buffer (pH=6.8) H2PO 4 /HPO 4 2– as the mobile phase. Recoveries were around 100%, absolute detection limits were 1.1, 1.4 and 2.2 ng for TMeSe, Se(IV) and Se(VI), respectively. Precision was lower than 10% in all cases. The method has been applied to tap water.  相似文献   

12.
Summary Thin-layer chromatography of Se(IV), Te(IV), V(V), and Mo(VI) as ternary mixtures has been described. The separation was effected on a silica gel G layer by employing two different solvent systems: diethyl oxalate-HCl (601v/v) andn-butyl acetate-HCl (400.6v/v). The chromatograms were visualized with 0.1M potassium thiocarbonate (PTC) spray and the limits of identification as determined, lie between 1.27 and 2.04g.
Zusammenfassung Die Dünnschichtchromatographie ternärer Gemische von Se(IV), Te(IV), V(V) und Mo(VI) wurde beschrieben. Die Trennung wurde auf Schichten von Kieselgel G mit zwei verschiedenen Lösungsmittelsystemen durchgeführt: Diäthyloxalat—Salzsäure (601) und n-Butylacetat—Salzsäure (400,6). Die Chromatogramme wurden mit 0,1-m Kaliumthiocarbonat gesprüht. Die Nachweisgrenze liegt zwischen 1,27 und 2,04g.
  相似文献   

13.
A method was tested for the determination of aluminum by graphite furnance atomic absorption spectrometry using hydrofluoric acid and cesium fluoride as matrix modifiers. Alunimum trifluoride is stable to 1291°C, after which it sublimes to form AlF3 gas. The subsequent gas-phase atomization of AlF3 occurs rapidly, and produces clean, sharp absorption peaks. This method has a detection limit of 7 pg Al at a confidence interval of 95%. The method is fairly insensitive to interferences, with the exception of strongly complexing organic acids. The addition of CuF2 to the matrix appears to eliminate interference from organic acids, but was found to produce a high background absorbance and to shorten the life of the graphite tube.  相似文献   

14.
 Parameters for the reduction of Se(VI) to Se(IV) in HCl medium by heating in a microwave oven have been optimized. The reduction resulted to be quantitative applying 100% power, corresponding to 600 W heating for 2 min in 6 mol/L or for 3 min in 4 mol/L HCl. The behavior of selenomethionine and selenocystine under the optimized reduction conditions was studied in order to evaluate a possible interference of these selenium species in the determination of Se(VI). The final determination of Se(IV), and Se(VI) were done by hydride generation-atomic absorption spectrometry. The analytical merits of the method are reported. The method was applied to the selective determination of Se(IV), and Se(VI) in spiked river and lake water. Received: 6 December 1996/Revised: 1 April 1997/Accepted: 3 April 1997  相似文献   

15.
The recombinantly produced different forms of protein G, namely monofunctional immunoglobulin G (IgG) binding, monofunctional serum albumin (SA) binding and bifunctional IgG/SA binding proteins G, are compared with respect to their specific affinities to blood IgG and SA. The affinity mode of the recently developed high-performance monolithic disk chromatography has been used for fast quantitative investigations. Using single affinity disks as well as two discs stacked into one separation unit, one order of magnitude in adsorption capacities for IgG and SA were found both for monofunctional and bifunctional protein G forms used as specific affinity ligands. However, despite the adsorption difference observed, the measured dissociation constants of the affinity complexes seemed to be very close. The analytical procedure developed can be realized within a couple of minutes. Up-scaling of the developed technology was carried out using another type of monolithic materials, i.e. CIM affinity tubes.  相似文献   

16.
The distribution of Mo(VI) and the interfering radiocontaminants U(VI), Zr(IV) and Nb(V) have been investigated between chromatographic alumina and aqueous hydrochloric acid solutions of concentrations ranging from 0.5M to 11M. At low acidities (less than 1M HCl) the distribution coefficients increase with the decrease of acid concentration, while in the region of 2–4M they increase with the increase of the acid concentration. Above 4M HCl, the increase inK D continues with the acid concentration for both Zr(IV) and Nb(V), but constant values are reached for U(VI) and Mo(VI).  相似文献   

17.
18.
Sladkov V 《Electrophoresis》2010,31(20):3482-3491
The uranyl–selenium(IV) and uranyl–selenium(VI) interactions were studied by CE in aqueous acid solutions, containing U(VI) and Se(IV) or Se(VI) at different concentrations, at pH 1.5, 2.0 and 2.5. The method proposed in this paper allows one with the use of CE data on metal ion mobilities at different pHs to establish the ligand species interacting with metal ion and complex species formed. In the case of Se(VI) a selenate, as demonstrated, interacts with uranyl ions, in the case of Se(IV) this is a hydroselenite. It was also shown that the equilibria for the U(VI)–Se(VI) and U(VI)–Se(IV) systems can be established from CE data. The formation of UO2SeO4, UO2(SeO4), UO2HSeO and UO2(HSeO3)2 species is demonstrated. The stability constant values were measured at different ionic strengths (from 0.02 to 0.2 mol/L). The logarithms of the stability constant values (β°) extrapolated to ionic strength 0 by the specific ion interaction theory (SIT) are found to be log β°1=2.93±0.06 for UO2SeO4 formation, log β°2=4.030.18 for UO2(SeO4) formation, log β°1=3.270.15 for UO2HSeO formation and log β°2=5.510.11 for UO2(HSeO3)2 at 25°C. The results for the first constant values for each of systems are consistent with the published values. For UO2(SeO4) formation, a new constant stability value is given. The existence of UO2(HSeO3)2 complex species is demonstrated and its constant stability value is given for the first time.  相似文献   

19.
20.
The interaction of Np(VI), Pu(VI), Np(V), Np(IV), Pu(IV), Nd(III), and Am(III) with Al(III) in solutions at pH 0–4 was studied by the spectrophotometric method. It was shown that, in the range of pH 3–4, the hydrolyzed forms of neptunyl and plutonyl react with the hydrolyzed forms of aluminium. In the case of Pu(VI), the mixed hydroxoaqua complexes (H2O)3PuO2(-OH)2Al(OH)(H2O)3 2+ or (H2O)4PuO2OAl(OH)(H2O)4 2+ are formed at the first stage of hydrolysis. Np(VI) also forms similar hydroxoaqua complexes with Al(III). The formation of the mixed hydroxoaqua complexes was also observed when Np(IV) or Pu(IV) was simultaneously hydrolyzed with Al(III) at pH 1.5–2.5. The Np(IV) complex with Al(III) has, most likely, the formula (H2O) n (OH)Np(-OH)2Al(OH)(H2O)3 3+. At pH from 2 to 4.1 (when aluminium hydroxide precipitates), the Np(V) or Nd(III) ions exist in solutions with or without Al(III) in similar forms. When pH is increased to 5–5.5, these ions are almost not captured by the aluminium hydroxide precipitate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号