首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 869 毫秒
1.
The crystals of the title compounds (H3O)(C3H5N2)[Mn(OH)6Mo6O18]·3.5H2O 1 and (H3O)3[Co(OH)6Mo6O18]·7H2O 2 have been prepared and structurally determined by X-ray single-crystal diffraction. Compound 1 crystallizes in monoclinic, space group C2/c with a = 21.5018(9), b = 10.9331(5), c = 11.8667(5)A,β = 95.3570(10)o, V = 2777.5(2)A3, Z = 4, Dc = 2.802 g/cm3, Mr = 1171.80,μ(MoKα) = 3.173 mm-1, F(000) = 223, the final R = 0.0458 and wR = 0.1041 for 2093 observed reflections (I>2σ(I)); Compound 2 crystallizes in monoclinic, space group P21/c with a = 11.4042(12), b = 10.9481(11), c = 11.6722(12)A, β= 99.948(2)o, V = 1435.4(3)A3, Z = 2, Dc = 2.794 g/cm3, Mr = 1207.80,μ(MoKα) = 3.223 mm-1, F(000) = 1160, the final R = 0.0544 and wR = 0.1066 for 1906 observed reflections (I > 2σ(I)). Both compounds 1 and 2 adopt the Anderson structure, in which the anion is of centrosymmetry and formed by six octahedral edge-sharing MoO6 units surrounding the central MO6 (M = Mn or Co) octahedron.  相似文献   

2.
Two Cu(II) hydroxo succinates [Cu3(H2O)2(OH)2(C4H4O4)2]?·?4H2O (1) and [Cu4(H2O)2(OH)4(C4H4O4)2]?·?5H2O (2) and one Cu(II) hydroxo glutarate [Cu5(OH)6(C5H6O4)2]?·?4H2O (3) have been prepared and structurally characterized by single crystal X-ray diffraction methods. They feature 1D and 2D copper oxygen connectivity of elongated {CuO6} octahedra in “4?+?1?+?1” and “4?+?2” coordination geometries. Within 1, linear trimers of three edge-sharing {CuO6} octahedra are connected into copper oxygen chains, which are bridged by the anti conformational succinate anions to generate 2D layers with mono terminally coordinating gauche succinate anions on both sides. The layers are assembled into a 3D framework by interlayer hydrogen bonds with lattice H2O molecules distributed in channels. Different from 1, the principal building units in 2 are linear tetramers of four edge-sharing {CuO6} octahedra. The tetramers are condensed into copper oxygen chains and the succinate anions interlink them into a 3D framework with triangular channels filled by lattice H2O molecules. The {CuO6} octahedra in 3 are edge-shared to form unprecedented 2D inorganic layers with mono terminally coordinating glutarate anions on both sides. Interlayer hydrogen bonding interactions are responsible for supramolecular assembly of the layers into a 3D framework with lattice H2O molecules in the channels. The inorganic layers in 3 can be described as hexagonal close packing of oxygen atoms with the Cu atoms in the octahedral cavities. The title compounds were further characterized by elemental analyses, IR spectra and thermal analyses.  相似文献   

3.
Three metal molybdate hydrates,Fe(H2O)2(MoO4)2·H3O(FeMo),NaCo2(MoO4)2(H3O2)(CoMo)and Mn2(MoO4)3·2H3O(MnMo),were synthesized by the mixed-solvent-thermal methods and characterized by singlecrystal X-ray...  相似文献   

4.
The novel mixed-ligand neutral compound [Mo3O4(C2O4)2·bipy(H2O)3]·EtOH·2H2O (bipy = 2,2'-bipyridine) has been prepared by the reaction of oxalic acid elution of Mo(Ⅳ) and bipy, and characterized by single-crystal X-ray diffraction analysis and IR. The crystal is of triclinic, space groups P1 with a = 9.5520(2), b = 10.3730(1), c = 13.5722(2) (A), α = 74.940(12), β = 80.772(14), γ = 69.898(11)°, V = 1215.73(11) (A)3, Z = 2, C16H24Mo3N2O18, Mr = 820.19, Dc = 2.241 g/cm3, μ = 1.616 mm-1, F(000) = 808, T= 293(2) K, the final R = 0.0424 and wR = 0.0939 for 4119 observed reflections with Ⅰ> 2σ(Ⅰ). The trinuclear unit is coordinated by mixed ligands of oxalate and bipy. The intermolecular hydrogen bonding interactions among adjacent [Mo3O4(C2O4)2·bipy(H2O)3] extend the compound into a therr-dimensional supramolecular framework. The uncoordinated water molecules and ethal molecules act as space-fillers and consolidate the whole architecture through hydrogen bonding interactions.  相似文献   

5.
Compounds p-HOOCC6F4COOH · H2O (H2L · H2O), [Tb2(H2O)4(L)3 · 2H2O] n (I), and Tb2(Phen)2(L)3 · 2H2O (II) are synthesized. According to the X-ray structure analysis data, the crystal structure of H2L · H2O is built of centrosymmetric molecules H2L and molecules of water of crystallization. The crystal structure of compound I is built of layers of coordination 2D polymer [Tb2(H2O)4(L)3] n and molecules of water of crystallization. The ligands are the L2? anions performing both the tetradentate bridging and pentadentate bridging-chelating functions. The coordination polyhedron TbO9 is a distorted three-capped trigonal prism. Acid H2L manifests photoluminescence in the UV region (??max = 368 nm). Compounds I and II have the green luminescence characteristic of the Tb3+ ions, and the band with ??max = 545 nm (transition 5 D 4?? 7 F 5) is maximum in intensity. The photoluminescence intensity of compound II is higher than that for compound I.  相似文献   

6.
《Solid State Sciences》2000,2(1):109-118
Y(OH)(SO4), Y(SO4)F, YNi(OH)3(SO4)-II and Y2Cu(OH)3(SO4)2F·H2O are obtained from hydrothermal reactions at 380°C under a pressure of 210 MPa. Their crystal structures were refined from single-crystal X-ray diffraction data. The four compounds have the following space groups and unit cells: Y(OH)(SO4), P21/n, a=7.9498(6), b=10.9530(9), c=8.1447(6) Å, β=93.764(1)°; Y(SO4)F, Pnma, a=8.3128(9), b=6.9255(7), c=6.3905(7) Å; YNi(OH)3(SO4)-II, Pnma, a=6.9695(8), b=7.2615(8), c=10.292(1) Å; Y2Cu(OH)3(SO4)2F·H2O, P21/n, a=11.6889(7), b=6.8660(4), c=12.5280(8) Å, β=97.092(1)°. The coordination environments of the yttrium atoms in the four structures vary from highly irregular 6+2, 6+3, 7+1 coordination polyhedra to relatively regular dodecahedra.  相似文献   

7.
Ion selective and complexing properties of 1,5-bis[2-(dioxyphosphoryl-4-methoxy)phenoxy]-3-oxapentane dihydrate H4M2 · 2H2O (I) were described. X-ray diffraction analysis for compound I was performed. The crystals are orthorhombic, a = 7.9818(16) ?, b = 30.553(6) ?, c = 9.0559(17) ?, V = 2208.5(8) ?3, Z = 4, space group Pnma, R = 0.0500 over 1372 reflections with I > 2??(I). In I, the H4M2 molecules are combined by hydrogen bonds (HB) with two crystallographically independent H2O(7) and H2O(8) molecules to give neutral H4M2 · 2H2O aggregates. The HB between the phosphoryl and hydroxyl oxygen atoms of the aggregates and the donor O(7)-H??O(8) HB give rise to a layered structure. Conclusions about the Cu(H2M2) compound structure were drawn based on the X-ray diffraction, DTA, and vibrational spectroscopy data.  相似文献   

8.
9.
The complex Na6[(UO2)3O(OH)3(SeO4)2]2 · 10H2O (I) is synthesized and studied by X-ray diffraction. The compound crystallizes in the orthorhombic crystal system with the unit cell parameters: a = 14.2225(7) Å, b = 18.3601(7) Å, c = 16.5406(6) Å, V = 4319.2(3) Å3, Z = 4, space group Cmcm, R 1 = 0.0406. Compound I is found to be a representative of the crystal-chemical group A3M3M2 3T3 2 (A = UO2+ 2, M3 = O2?, M2 = OH?, T3 = SeO2? 4) of the uranyl complexes; it contains layer uranium-containing groups [(UO2)3O(OH)3(SeO4)2]3?. These layers linked to form a three-dimensional cage through bonds formed by the sodium atoms with the oxygen atoms of the uranyl ions and SeO4 groups that belong to different layers.  相似文献   

10.

Reaction of a freshly prepared Ni(OH)2?2 x (CO3) x ·yH2O with maleic acid in H2O at room temperature afforded [Ni(H2O)6][Ni(H2O)2(C4H2O4)]·4H2O, which consists of [Ni(H2O)6]2+ cations, [Ni(H2O)2(C4H2O4)]2? anions and lattice H2O molecules. Ni atoms in cations are octahedrally coordinated and Ni atoms in anions are each octahedrally coordinated by bidentate chelating maleato ligands and two water molecules at trans positions. Cations and anions are interlinked by hydrogen bonds to form 1D chains, which are hexagonally arranged and connected by the lattice water molecules. When heated in a flowing argon stream, the compound decomposes, with complete dehydration being followed by dissociation of nickel maleate into NiO and maleic anhydride.  相似文献   

11.
The title compound (C6N3H18)2Ti4O4(C2O4)7(4H2O 1 (C13H22N3O18Ti2, Mr = 604.14) was synthesized by the reaction of Ti(SO4)2, H2C2O4(2H2O and N-(2-ammonioethyl)- piperazinium (AEPP) in aqueous solution. The single-crystal X-ray analysis has revealed that 1 crystallizes in the triclinic system, space group Pī with a = 9.1437(6), b = 11.4991(10), c = 11.6975(8)A, α = 96.2915(18), β = 107.998(3), γ = 104.276(4)°, V = 1110.35(14)A3, Z = 2, Dc = 1.807 g/cm3, F(000) = 618, μ = 0.815 mm-1, the final R = 0.0463 and wR = 0.1264 for 3718 observed reflections with I > 2σ(I). X-ray crystal-structure analysis suggests that compound 1 consists of [Ti4O4(C2O4)7]6- anion and two protonated N-(2-ammonioethyl)piperazinium cations. The anions are linked into an infinite chain through Ti4O4(C2O4)8 by sharing the oxalates as bridging ligands.  相似文献   

12.
A novel hydrated cobalt tetraborate complex NH4[Co(NH3)5(H2O)][B4O5(OH)4]2·6H2O, was synthesized by the reaction of NH4‐borate aqueous with CoCl2 and its structure was determined by single crystal X‐ray diffraction. The crystal system of this complex is orthorhombic, the space group is Pnma, and the unit cell parameters are a=1.2901(2) nm, b=1.6817(3) nm, c=1.1368(2) nm, α=β=γ=90°, V=2.4742(8) nm3, and Z=4. This compound contains infinite borate layers constructed from [B4O5(OH)4]2? units via hydrogen bonds. The adjacent polyborate anion layers are further linked together with the octahedral [Co(NH3)5(H2O)]3+ groups through hydrogen bonds to form 3D framework. The groups and guest water molecules are deposited in the empty space of this framework and interact with the layers by extensive hydrogen bonds. Infrared and Raman spectra (4000–400 cm?1) of NH4[Co(NH3)5(H2O)][B4O5(OH)4]2·6H2O were recorded at room temperature and analyzed. Fundamental vibrational modes were identified and band assignments were made. The middle band observed at 575 cm?1 in Raman spectrum is the pulse vibration of [B4O5(OH)4]2?.  相似文献   

13.
《Polyhedron》1999,18(21):2781-2785
The compounds (NH4)6[Mo6V2O24(C2O4)2]·6H2O (I) and (NH4)4[H2Mo2V2O12(C2O4)2]·2H2O (II) have been prepared from molybdenum(VI) oxide and ammonium vanadate in aqueous solution through the addition of ammonium oxalate, and their structures determined by X-ray structure analysis. Whereas the molybdovanadate anion [Mo6V2O24(C2O4)2]6− found in (I) consists of six MoO6 and two VO6 edge-sharing octahedra of the γ-[Mo8O26]4− type structure, the tetranuclear anion [H2Mo2V2O12(C2O4)2]4− of (II) adopts the structure with a M4O16 core. Both complexes contain bidentate oxalato ligands bonded to the vanadium ions. In both crystal structures the molybdovanadate anions are mutually hydrogen bonded by ammonium ions and water molecules.  相似文献   

14.
《Solid State Sciences》2012,14(9):1321-1326
The crystal structure analyses of {[Er(H2O)5(Er(H2O)4)3][Mo(CN)8]3·11H2O}n (1) and {[Eu(H2O)5(Eu(H2O)4)3][Mo(CN)8]3·11H2O}n (2), show that they are not only new neutral three-dimensional rare-earth octacyanomolybdate(IV) molecular frameworks, but that they also belong to an unknown structure type having seven different nodes. To the best of our knowledge this is different to any other known molybdenum(IV) octacyanide complexes published to date. Both compounds crystallize in the triclinic system, space group P-1, and are isostructural and isotypic. The coordination polyhedra of the molybdenum atoms in the three different [Mo(CN)8]4− anions are trigonal prisms, with two additional atoms. A new bridging mode for octacyanometallates is also observed with five of the eight cyanide groups involved in bridging either three or four rare-earth atoms, while the three remaining cyanide groups are terminal and are involved in hydrogen bonding. The four rare-earth atoms in 1 and 2 have different coordination polyhedra in the form of trigonal prisms with two additional atoms. The three-dimensional structures are made up of infinite two-dimensional slabs linked by one of the rare-earth metal atoms. In both compounds, apart from the 17 coordinated water molecules, there are 11 lattice water molecules of crystallization present in the cavities of the three-dimensional frameworks. The 28 water molecules and the terminal CN groups are involved in an extensive O–H⋯O and O–H⋯N hydrogen bonding network.  相似文献   

15.
Tetraalkylammonium chlorides peroxosolvates (CH3)4NCl·H2O2 and (C2H5)4NCl·H2O2 were synthesized. The composition of the solvates was proved by chemical analysis; their X-ray patterns, IR spectra, and thermograms were obtained. The solubility of the solvates in water and their stability in aqueous solutions were investigated.  相似文献   

16.
Reaction of the [Mo2O2S2(OH2)6]2+ aqua cation and [WO4]2? with the trivacant ion [α-B-AsW9O33]9? in acidic condition (pH = 1.4) leads to the formation of a {Mo2S2O2}-supported polyoxotungstate. The mixed salt NMe4K12[(α–AsW9O33)3(WO(OH2))3(Mo2O2S2(H2O)4)]?20H2O (noted TMAK121) has been obtained as single crystals and structurally characterized by X-ray diffraction analysis. The structural analysis of TMAK12-1 reveals a molecular polyoxotungsto-arsenate (III) framework consisting of three α-{AsW9O33} subunits mutually linked by three {O = W-OH2}4+ groups. The resulting triangular arrangement delimits a large “open-space”, lined on the periphery by six terminal oxygen atoms. The central cavity is partially filled by a single {Mo2O2S2(OH2)4}2+ which spans two {AsW9O33} subunits. Furthermore, three potassium ions have been located, one being embedded within the central cavity and the other two, symmetrically distributed at the periphery of the central cavity. In the solid state, two anions 1 interact through hydrogen bonds and ionic contacts to give a large dimeric arrangement bordered by two TMA+ cations. 1 has been characterized in solution (Li+ salt) by its 183W NMR spectrum which contains 16 lines in agreement with the Cs idealized symmetry assumed for the isolated anion 1. Infrared data and elemental analysis are also supplied.  相似文献   

17.
The compound (H3O)2{(Na2(OH)CB[5])2[HV4O12]}Cl · 14H2O is synthesized by heating (120°C) of a mixture of sodium vanadate, cucurbit[5]uril (CB[5]), rubidium chloride, and water in a sealed ampule. According to the X-ray diffraction data, the binding of the [Na2(OH)]+ binuclear cation with CB[5] occurs due to the bidentate coordination of the oxygen atoms of the portals of cucurbit[5]uril to the sodium atoms. The tetranuclear vanadium complex [HV4O12]3? serves as a bridge, joining infinite chains {Na2(OH)CB[5]} + in pairs.  相似文献   

18.
A new iron(III)/vanadium(III) phosphate, K3[Fe3.26V0.74(OH)O(PO4)4(H2O)2]·2H2O (1), has been obtained by hydrothermal synthesis and characterized by single crystal X-ray diffraction, Scanning electron microscopy–energy dispersive X-ray spectroscopy, Inductively coupled plasma atomic emission spectroscopy (ICP), thermogravimetric analysis, and FTIR spectroscopy. Single crystal X-ray diffraction reveals a 3D open framework (monoclinic, space group P21/n, a?=?9.6391(7)?Å, b?=?9.8063(7)?Å, c?=?9.7268(7)?Å, β?=?100.71(1)°, and V?=?903.38(11)?Å3). This structure presents FeIII and VIII in a 4.4?:?1?M ratio with the metal ions in two different crystallographic sites. Both metallic centers have distorted octahedral environments, linked by PO4 tetrahedra, forming channels along the a-axis. The asymmetric unit of K3[Fe3.26V0.74(OH)O(PO4)4(H2O)2]·2H2O presents a {M4(OH)O(PO4)4(H2O)2}3? anionic entity, charge balanced by three K+, which are located within the channels. It is also possible to distinguish M4O2 units whose MIII polyhedra are linked by vertex and edges.  相似文献   

19.
The syntheses and crystal structures of the closely related but non-isostructural Cd2(C19H21N3O3F)4(H2O)2?·?4H2O (1) and Pb2(C19H21N3O3F)4?·?4H2O (2) are described, where C19H21N3O3F? is enrofloxacinate (enro). Both compounds contain centrosymmetric, binuclear, neutral complexes incorporating a central diamond-shaped M2O2 (M?=?Cd, Pb) structural unit. The Cd2+ coordination polyhedron in 1 is a CdO6 trigonal prism, including one coordinated water. The Pb2+ coordination polyhedron in 2 can be described as a very distorted square-based PbO5 pyramid, although two additional short Pb?···?O (<3.1?Å) contacts are also present. In the crystal of the cadmium complex, O–H?···?O hydrogen bonds lead to a layered structure. In the lead compound, O–H?···?O and O–H?···?N interactions lead to chains in the crystal. Crystal data: 1: C76H96Cd2F4N12O18, M r?=?1766.45, triclinic, P 1, a?=?12.185(2)?Å, b?=?12.306(3)?Å, c?=?14.826(3)?Å, α?=?68.15(3)°, β?=?70.28(3)°, γ?=?86.11(3)°, V?=?1938.2(7)?Å3, Z?=?1, T?=?298 K, R(F)?=?0.030, wR(F 2)?=?0.079. 2: C76H88F4N12O16Pb2, M r?=?1920.00, triclinic, P 1, a?=?12.0283(4)?Å, b?=?12.7465(4)?Å, c?=?13.0585(4)?Å, α?=?83.751(1)°, β?=?74.635(1)°, γ?=?81.502(1)°, V?=?1904.3(1)?Å3, Z?=?1, T?=?298?K, R(F)?=?0.021, wR(F 2)?=?0.049.  相似文献   

20.
A new Anderson polyoxometalate (H3O)[(3-C5H7N2)2(Cr(OH)6Mo6O18)]?·?3H2O (3-C5H6N2?=?3-aminopyridine) was hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Crystal data: triclinic, P 1, a?=?7.8482(8)?Å, b?=?10.1800(10)?Å, c?=?10.4103(10)?Å, α?=?88.031(3)°, β?=?78.308(2)°, γ?=?88.842(3)°, V?=?813.91?Å3, Z?=?1, R(F)?=?0.0397, wR ref(F 2)?=?0.1022, and S?=?1.076. The X-ray crystallographic study showed that the structure contains Anderson-type [Cr(OH)6Mo6O18]3? polyoxoanions. The title compound has high catalytic activity for the oxidation of acetone tested in a continuous-flow fixed-bed micro-reactor. When the initial concentration is 18.3?g?m?3 in air and the flow velocity is 8.5?mL?min?1, the acetone is completely eliminated at 160°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号