首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-molecular-weight (LMW) organic acids exist widely in soils and have been implicated in many soil processes, such as nutrient availability, translocation of metals, fate of heavy metals, and mineral weathering. In this paper, the effect of the LMW organic anions on the exchangeable aluminum of two variable-charge soils was examined. The results showed that the organic anions induced an increase or a decrease in the exchangeable Al, and the extent and direction of the effect depended on the nature of organic anions, surface chemical properties of soils, and pH. For example, at pH 4.5, the quantity of exchangeable Al of Oxisol in the control system was 2.65 mmol kg(-1), whereas the values in the citrate, oxalate, malonate, malate, tartarate, salicylate, and lactate systems increased by 3.25, 1.93, 1.95, 1.82, 1.28, 0.88, and 0.45 times, respectively. In contrast, the quantity of the exchangeable Al of Ultisol at pH 4.5 in the oxalate and the citrate systems decreased by 8.8 and 19.6%, respectively. The increase in the exchangeable Al was caused mainly by the increase in negative surface charge of the soils due to the specific adsorption of organic anions. The ability of organic anions at low concentrations to increase exchangeable Al for Oxisol followed the order citrate > oxalate and malonate > malate > tartarate > salicylate > maleate > lactate. This order is consistent with that of the effect of the adsorption of anions on the increase in the negative surface charge and/or the decrease in the positive surface charge of the soil. On the other hand, the organic anions could depress the exchangeable Al through the formation of soluble Al-organic anion complexes under certain conditions. The anions with small stability constants of Al-organic anion complexes, such as lactate, caused an increase in exchangeable Al with the change in surface charge of the soils, while those with large stability constants, such as citrate and oxalate, caused an increase in the exchangeable Al at low concentration and a decrease at high concentration.  相似文献   

2.
The adsorption of oxalate on a model aluminum oxide, corundum (alpha-Al2O3), has been examined over a broad range of oxalate concentrations (0.125-25.0 mM) and pH conditions (2-10). In situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) measurements indicate that at low to intermediate concentrations ([oxalate] < or = 2.50 mM), oxalate adsorbs to corundum predominantly as a bidentate, mononuclear, inner-sphere complex involving both carboxyl groups. Significant contributions from outer-spherically bound oxalate and aqueous Ox(2-) are additionally observed at higher oxalate concentrations. Consistent with the ATR-FTIR findings, macroscopic adsorption data measured for oxalate concentrations of 0.125-2.50 mM can be generally well modeled with a single bidentate, inner-sphere oxalate complex using the charge distribution multisite complexation (CD-MUSIC) model. However, at intermediate oxalate concentrations (0.50 and 1.25 mM) and pH <5, the extent of oxalate adsorption measured experimentally is found to fall significantly below that predicted by CD-MUSIC simulations. The latter finding is interpreted in terms of competition for oxalate from dissolved Al(III), the formation of which is promoted by the dissolution-enhancing properties of the adsorbed oxalate anion. In accordance with this expectation, increasing concentrations of dissolved Al(III) in solution are found to significantly decrease the extent of oxalate adsorption on corundum under acidic pH conditions, presumably through promoting the formation of Al(III)-oxalate complexes with reduced affinities for the corundum surface compared with the uncomplexed oxalate anion.  相似文献   

3.
The effects of the adsorption of a simple dicarboxylate low molecular weight organic anion, maleate, on the dissolution of a model aluminum oxide, corundum (alpha-Al2O3), have been examined over a range of different maleate concentrations (0.125-5.0 mM) and pH conditions (2-10). In situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic measurements indicate that maleate binds predominantly as an outer-sphere, fully deprotonated complex ([triple bond]AlOH2+ -Mal2-) at the corundum surface over the entire range of maleate concentrations and pH conditions investigated. In accordance with the ATR-FTIR findings, macroscopic adsorption data can be modeled as a function of maleate concentration and pH using an extended constant capacitance approach and a single [triple bond]AlOH2+ -Mal2- species. Outer-sphere adsorption of maleate is found to significantly reduce the protolytic dissolution rate of corundum under acidic conditions (pH < 5). A likely mechanism involves steric protection of dissolution-active surface sites, whereby strong outer-sphere interactions with maleate hinder attack on those surface sites by dissolution-promoting species.  相似文献   

4.
It is known that some inorganic anions can be adsorbed by variable-charge soils specifically, resulting in the lowering of the zeta potential of the clay particle. Reasoning similarly, organic anions should also have such an effect. In this article, the effect of the anions of five low-molecular-weight (LMW) organic acids existing widely in soils on the zeta potentials of two variable-charge soils was examined. The results showed that the presence of organic anions led to a decrease in zeta potential. The effect of different anions on zeta potential followed the order oxalate>citrate>malate>maleate>acetate. The effect increased with the increase in anion concentration and decreased with the increase in pH. The extent of the effect on different soils was apparently related to their iron oxide content. The presence of organic anions also led to a decrease in the isoelectric point (IEP) of the soil. The IEPs of two soils in organic anion systems followed the order acetate>maleate>malate>citrate. No IEP was detected for the oxalate system.  相似文献   

5.
Adsorption of DNA on montmorillonite, kaolinite, goethite and soil clays from an Alfisol in the presence of citrate, tartrate and phosphate was studied. A marked decrease in DNA adsorption was observed on montmorillonite and kaolinite with increasing anion concentrations from 0 to 5 mM. However, the amount of DNA adsorbed by montmorillonite and kaolinite was enhanced when ligand concentration was higher than 5 mM. In the system of soil colloids and goethite, with the increase of anion concentrations, a steady decrease was found and the ability of ligands in depressing DNA adsorption followed the sequence: phosphate > citrate > tartrate. Compared to H2O2-treated clays (inorganic clays), a sharp decrease in DNA adsorption was observed on goethite and organo-mineral complexes (organic clays) with increasing ligand concentrations. The results suggest that the influence of anions on DNA adsorption varies with the type and concentration of anion as well as the surface properties of soil components. Introduction of DNA into the system before the addition of ligands had the greatest amount of DNA adsorption on soil colloids and goethite. Organic and inorganic ligands promoted DNA adsorption on montmorillonite and kaolinite when ligands were introduced into the system before the addition of DNA. The results obtained in this study have important implications for the understanding of the persistence and fate of DNA in soil environments especially rhizosphere soil where various organic and inorganic ligands are active.  相似文献   

6.
Adsorbed polyethylenimine (PEI) of M w 1,800 and 70,000 on silica (SiO2) dispersions produced flocculated slurry in the pH range of 5 to 12. Adsorbed citrate widens this flocculated pH regime. It also increases the strength of the interparticle attractive force or the yield stress over the pH range of between 3 and 8. The stronger attractive force is due to particle bridging by the citrate anions bonding with positively charge sites of the adsorbed PEI layer of the interacting particles at the closest point of interaction. The higher M w PEI being more strongly attached to the silica particle produced a stronger attractive interparticle force with adsorbed citrate anions. Via charge balance calculation using contributions from SiO2, PEI, and citrate, the pH of zero charge was found to correspond to the pH of zero zeta potential for PEI of M w 70,000. This suggests 100% adsorption of PEI and citrate on SiO2. The bridging interaction was confirmed by a linear relationship between yield stress and the square of the limiting citrate charge content. Adsorbed citrate was found for the first time to play the role of a bridging agent, a result of the positive charges being located on a more flexible adsorbed layer rather than being fixed to a rigid surface.  相似文献   

7.
The interfacial properties of the system titanium(IV) oxide/poly(4-styrenesulfonate) (PSS) over a broad pH region in the presence of different alkali metal chlorides of different concentrations were investigated by means of electrokinetic, adsorption and surface potential measurements. Adsorption and electrokinetic data were obtained with colloid TiO2 particles, while surface potential data were obtained using a single crystal rutile electrode with the 001 plane exposed to the liquid medium. The electrokinetic and surface potentials of TiO2 were measured in the absence and presence of PSS. Since the presence of PSS did not significantly affect surface potentials, it was concluded that negative PSS molecules adsorbed at the surface by forming an outer-sphere surface complex rather than inner-sphere complex. The adsorption decreases significantly with pH, while the electrokinetic potential in the presence of PSS is negative in the whole investigated pH region. Amount of adsorbed PSS molecules is limited by the electrostatic repulsion which suppresses further adsorption, i.e. above critical potential of ?50 millivolts. In the acidic region, where the surface is originally positively charged the amount of adsorbed PSS molecules is high since negative PSS molecules should at first compensate original positive charge and in the second step reverse the charge to reach the critical potential. In the basic region the surface charge is already negative so that small amount of adsorbed PSS molecules creates critical potential that prevents further adsorption.  相似文献   

8.
Low-molecular-weight (LMW) organic acids exist widely in soils and have been implicated in many soil processes. In the present paper, the effect of the anions of four low-molecular-weight organic acids on the surface charge of three variable charge soils was investigated. The results showed that the presence of organic anions led to an increase in negative charge and a decrease in positive charge. Positive charges decreased to a larger extent than negative charges. The effect of different anions on surface charge followed the order citrate > malate > oxalate > acetate. For hyper-rhodic ferrasol and rhodic ferrasol, the change of positive charge decreased with the increase in pH, while that of negative charge increased with the increase in pH. Among different soils the extent of change in surface charge was related to their iron oxides content. When free iron oxides were removed from the soil, the effect of organic anions on surface charge decreased sharply. These findings may be of practical significance for variable charge soils low in nutrient-retaining capacity by increasing the retaining capacity for cations such as potassium and calcium considerably but decreasing that for anions such as nitrate remarkably.  相似文献   

9.
Gaseous metal anions such as Na(-), K(-), Cs(-), and Ag(-) can be generated at ambient temperatures by the collision-induced dissociation of the anions of several dicarboxylic acid salts, including oxalate, maleate, fumarate, succinate, and glutamate salts. The formation of gaseous metal anions in this way is unprecedented because the metal is initially present in its cationic form. The mild process described here could facilitate novel applications of metal anions as selective reagents for gas-phase ion-molecule and ion-ion reactions. Ab initio calculations were used to describe the dissociation process for anions of the oxalate salts. The formation of alkalides occurs via production of a metal-carbon dioxide anion intermediate with a bidentate three-center two-electron bond to the metal. The metal atom acquires a partial negative charge in the intermediate structure.  相似文献   

10.
The adsorption and oxidation of oxalic acid at gold electrodes were studied by in-situ infrared spectroscopy. External reflection experiments carried out with gold single-crystal electrodes were combined with internal reflection (ATR-SEIRAS) experiments with gold thin-film electrodes. These gold thin films, with a typical thickness of ca. 35 nm, were deposited on silicon substrates by argon sputtering. As previously reported for evaporated gold films, the voltammetric curves obtained in sulfuric acid solutions after electrochemical annealing show typical features related to the presence of wide bidimensional (111) domains with long-range order. The in-situ infrared data collected for solutions of pH 1 confirmed the potential-dependent adsorption of either oxalate (Au(100)) or a mixture of bioxalate and oxalate (Au(111), Au(110), and gold thin films) anions in a bidentate configuration. The better signal-to-noise ratio associated with the SEIRA effect in the case of the gold thin-film electrodes allows the observation of the carbonyl band for adsorbed bioxalate that was not detected in the external reflection experiments. Besides, additional bands are observed between 2000 and 3000 cm(-)(1) that can be tentatively related to the formation of hydrogen bonds between neighboring bioxalate anions. The intensities of these bands decrease with increasing solution pH values, disappearing for pH 3 solutions in which adsorbed oxalate anions are the predominant species. The analysis of the intensities of the nu(s)(O-C-O) and nu(C-OH) + delta(C-O-H) bands for adsorbed oxalate and bioxalate, respectively, suggests that the pK(a) for the surface equilibrium between these species is significantly lower than that for the solution equilibrium.  相似文献   

11.
The retention and separation selectivity of inorganic anions and on-column derivatised negatively charged citrate or oxalate metal complexes on reversed-phase stationary phases dynamically coated with N-(dodecyl-N,N-dimethylammonio)undecanoate (DDMAU) has been investigated. The retention mechanism for the metal-citrate complexes was predominantly anion exchange, although the amphoteric/zwitterionic nature of the stationary phase coating undoubtedly also contributed to the unusual separation selectivity shown. A mixture of 10 inorganic anions and metal cations was achieved using a 20 cm monolithic DDMAU modified column and a 1 mM citrate eluent, pH 4.0, flow rate equal to 0.8 mL/min. Selectivity was found to be strongly pH dependent, allowing additional scope for manipulation of solute retention, and thus application to complex samples. This is illustrated with the analysis of an acidic mine drainage sample with a range of inorganic anions and transition metal cations, varying significantly in their concentrations levels.  相似文献   

12.
The effect of pH on the removal of Co(II) by kaolinite both in the absence and presence of phosphate, citrate, oxalate and EDTA anions, and cationic and anionic surfactants have been investigated and the results obtained are compared with the precipitate formation curve of Co(II) calculated theoretically from published hydrolysis data of the metal ion. In general, the results indicate that the percent adsoprtion of Co(II) increases with the pH and that kaolinite has little affinity for anionic metal complexes. Both strong cationic and anionic surfactants decrease the percent removal of Co(II) by kaolinite but the reasons are different. On the other hand, the weakly ionized anionic surfactant, potassium stearate, enhances the adsorption of Co(II) by kaolinite. The results are discussed in terms of the hydrolysis of Co(II), the properties of kaolinite, and the possible interaction between the ligands tested and both Co(II) and the clay mineral.  相似文献   

13.
The effect of anion concentration and the dependence of uranyl ascorbate on the nature of anion present is systematically studied for nine different anions over the concentration range (0.2–2.0) × 10−2 M. These anions, commonly encountered in pharmaceutical preparations with ascorbic acid (vitamin C) are nitrate, sulfate, chloride, bromide, fluoride, phosphate, citrate, oxalate, and tartrate. Based on the absorbance data, and on the value of the replacement constant K calculated, the studied anions may be arranged according to their complexing power on uranium as follows: citrate > tartrate > phosphate > oxalate > fluoride > sulfate > nitrate > chloride > bromide.This order is substantiated by the calculated values of the side reaction coefficients αM of the uranyl ligand complex or the conditional stability constant of uranyl-ascorbate calculated at different ligand concentrations.  相似文献   

14.
In this paper, flow-through microdialysis is presented as a novel analytical tool for automatic sampling of low molecular weight organic anions (LMWOA), such as oxalate and citrate, in solid samples of environmental concern. The microsampling methodology involves the implantation of dedicated capillary-type probes offering unrivalled spatial resolution (ca. 200 μm) in definite soil sites. These passive samplers are aimed at monitoring local processes, such as the release of organic acids occurring in the rhizosphere environment, in nearly real-time.The influence of chemical and physical variables (composition and flow rate of the perfusion liquid, ionic strength and pH of the outer medium and presence of metal ions therein) was assessed in vitro using liquid-phase assays. On the other hand, the resistance of the external solid medium to mass transfer, and the actual applicability of in vivo calibration methods were investigated using quartz sand as an inert model soil. Microdialysers furnished with 3 cm long semipermeable tubular membranes were perfused with 0.01 M NaNO3 at a flow rate of 2.0 μl/min, yielding dialysis recoveries ≥45% for both assayed LMWOAs in simulated background soil electrolyte solutions, and ≥24% in the interstitial liquid of complex solid samples.Full knowledge of the fate of LMWOAs in soils was obtained through the application of stimulus-response approaches that mimic the discrete exudation pulses of roots. Highly time-resolved microdialysates were used to discern readily available species such as free carboxylic anions and LMW metal-organic acid complexes from adsorbed, precipitated or mineralised analyte species in a variety of soil samples containing variable amounts of organic matter, exchangeable cations and different levels of metal pollution.  相似文献   

15.
Zeolites are suitable microporous hosts for positively charged organic species, but it is believed that they cannot adsorb organic anions. Pure Meisenheimer complex, derived from reduction of 2,4-dinitroaniline with NaBH4, was adsorbed inside faujasite cavities. Evidence for the internal incorporation of this negatively charged reaction intermediate comes from 1) XPS elemental analysis as a function of the depth of penetration into the particle, 2) the remarkable blue shift in lambda(max) of the Meisenheimer complex adsorbed on zeolite (ca. 470 nm) as compared to that in acetonitrile (580 nm) and 3) from the lack of reactivity with size-excluded hydride-acceptor reagents. Evidence is provided in support of an adsorption mechanism in which a neutral ion pair (alkali metal ion + Meisenheimer anion) is the actual species being adsorbed. In fact it appears that there is remarkable increase in the association constant for the ion-pair complex within the zeolite cavities as compared to DMF solution. Although this mechanism of adsorption as an ion-pair complex has precedents in the adsorption of some inorganic salts, what is novel is the notable increase in the stability and persistence of the Meisenheimer anion (a anionic reaction intermediate) as a result of zeolite inclusion. Adsorbed Meisenheimer complex exhibits much lower reactivity towards electron acceptors, oxygen, and water. Cyclic voltammetry of zeolite-modified electrodes reveals for the Meisenheimer complex adsorbed on LiY a reversible redox peak that is not observed in solution and has been interpreted as arising from site isolation and stabilisation of the electrochemically generated species.  相似文献   

16.
Effects of heavy metals and oxalate on the zeta potential of magnetite   总被引:3,自引:0,他引:3  
Zeta potential is a function of surface coverage by charged species at a given pH, and it is theoretically determined by the activity of the species in solution. The zeta potentials of particles occurring in soils, such as clay and iron oxide minerals, directly affect the efficiency of the electrokinetic soil remediation. In this study, zeta potential of natural magnetite was studied by conducting electrophoretic mobility measurements in single and binary solution systems. It was shown that adsorption of charged species of Co(2+), Ni(2+), Cu(2+), Zn(2+), Pb(2+), and Cd(2+) and precipitation of their hydroxides at the mineral surface are dominant processes in the charging of the surface in high alkaline suspensions. Taking Pb(2+) as an example, three different mechanisms were proposed for its effect on the surface charge: if pH<5, competitive adsorption with H(3)O(+); if 56, precipitation of heavy metal hydroxides prevails. Oxalate anion changed the associated surface charge by neutralizing surface positive charges by complexing with iron at the surface, and ultimately reversed the surface to a negative zeta potential. Therefore the adsorption ability of heavy metal ions ultimately changed in the presence of oxalate ion. The changes in the zeta potentials of the magnetite suspensions with solution pH before and after adsorption were utilized to estimate the adsorption ability of heavy metal ions. The mechanisms for heavy metals and oxalate adsorption on magnetite were discussed in the view of the experimental results and published data.  相似文献   

17.
The adsorption of Suwannee River fulvic acid (SRFA) and Pahokee peat humic acid (PPHA) at the boehmite (gamma-AlOOH)/water interface and the impact of SRFA on boehmite dissolution have been examined over a wide range of solution pH conditions (pH 2-12), SRFA surface coverages (Gamma(SRFA), total SRFA binding site concentration normalized by the boehmite surface area) of 0.0-5.33 micromol m(-2), and PPHA surface coverages (Gamma(PPHA), PPHA binding site concentration normalized by boehmite surface area) of 0.0-4.0 micromol m(-2), using macroscopic adsorption and in situ attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. At relatively high SRFA surface coverages (Gamma(SRFA) = 5.33 micromol m(-2)), in situ ATR-FTIR spectral features of adsorbed SRFA are very similar to those measured for SRFA in solution at approximately 1-3 pH units higher. At sub-monolayer surface coverages (Gamma(SRFA) = 1.20 and 2.20 micromol m(-2)), several new peaks and enhancements of the intensities of a number of existing peaks are observed. The latter spectral changes arise from several nonorganic extrinsic species (i.e., adsorbed carbonate and water, for alkaline solution conditions), partially protonated SRFA carboxyl functional groups (near-neutral pH conditions), and small quantities of inner-spherically adsorbed SRFA carboxyl groups and/or Al(III)-SRFA complexes (for acidic conditions). The spectra of PPHA adsorbed at boehmite/water interfaces also showed changes generally consistent with our observations for SRFA sorbed on boehmite. These observations confirm that SRFA and PPHA are predominantly adsorbed at the boehmite/water interface in an outer-sphere fashion, with minor inner-sphere adsorption complexes being formed only under quite acidic conditions. They also suggest that the positively charged boehmite/water interface stabilizes SRFA and PPHA carboxyl functional groups against protonation at lower pH. Measurements of the concentration of dissolved Al(III) ions in the absence and presence of SRFA showed that the boehmite dissolution process is clearly inhibited by the adsorption of SRFA, which is consistent with previous observations that outer-spherically adsorbed organic anions inhibit Al-(oxyhydr)oxide dissolution.  相似文献   

18.
A batch experiment was conducted to examine the behavior of nitrate, organic ligands, and phosphate in the co-presence of biochar and three common low-molecular-weight organic acids (LMWOAs). The results show that citrate, oxalate, and malate ions competed with nitrate ion for the available adsorption sites on the biochar surfaces. The removal rate of LMWOA ligands by the biochar via adsorption grew with increasing solution pH. The adsorbed divalent organic ligands created negatively charged sites to allow binding of cationic metal nitrate complexes. A higher degree of biochar surface protonation does not necessarily enhance nitrate adsorption. More acidic conditions formed under a higher dose of LMWOAs tended to make organic ligands predominantly in monovalent forms and failed to create negatively charged sites to bind cationic metal nitrate complexes. This could adversely affect nitrate removal efficiency in the investigated systems. LMWOAs caused significant release of phosphate from the biochar. The phosphate in the malic acid treatment tended to decrease over time, while the opposite was observed in the citric- and oxalic-acid treatments. This was caused by re-immobilization of phosphate in the former due to the marked increase in solution pH over time.  相似文献   

19.
Adsorption of cationic high molecular weight polyacrylamides (CPAM) (M(w) is about 800 kDa) with different fractions of cationic units tau = 0.09 and tau = 0.018 onto silica surface was studied over a wide range of pH (4-9) and KCl concentration (c(s) = 10(-3)-10(-1) M) by in-situ null ellipsometry. We discuss how the adsorbed layer depends on the bulk conditions as well as kinetically responds to changes in solution conditions. The adsorbed amount Gamma of CPAM increases with pH for all studied electrolyte concentrations until a plateau Gamma is reached at pH > 6. At low pH we observed an increase in adsorbed amount with electrolyte concentration. At high pH there is no remarkable influence of added salt on the values of the adsorbed amount. The thickness of adsorbed polymer layers, obtained by ellipsometry, increases with electrolyte concentration and decreases with pH. At low c(s) and high pH the polyelectrolyte adsorbs in a flat conformation. An overcompensation of the surface charge (charge reversal) by the adsorbed polyelectrolyte is observed at high c(s) and low pH. To reveal the reversibility of the polyelectrolyte adsorption with respect to the adsorbed amount and layer thickness, parameters such as polyelectrolyte concentration (c(p)), c(s), and pH were changed during the experiment. Generally, similar adsorbed layer properties were obtained independent of whether adsorption was obtained directly to initially bare surface or by changing pH, c(s), or the concentration of polyelectrolyte solution in the presence of a preadsorbed layer, provided that the coverage of the preadsorbed layer was low. Once a steady state of the measured parameters (Gamma, d) was reached, experimental conditions were restored to the original values and corresponding changes in Gamma and adsorbed layer thickness were recorded. For initially low surface coverage it was impossible to restore the layer properties, and in this case we always ended up with higher coverage than the initial values. For initial high surface coverage it was usually possible to restore the initial layer properties. Thus, we concluded that polyelectrolyte appears only partially reversible to changes in the solution conditions due the slow rearrangement process within the adsorbed layer.  相似文献   

20.
Adsorption of Pseudomonas putida on kaolinite, montmorillonite and goethite was studied in the presence of organic ligands and phosphate. Citrate, tartrate, oxalate and phosphate showed inhibitive effect on P. putida adsorption by three minerals in a broad range of anion concentrations. The highest efficiencies of the four ligands in blocking the adsorption of P. putida on goethite, kaolinite and montmorillonite were 58–90%, 35–76% and 20–48%, respectively. The ability of organic ligands in prohibiting the binding of P. putida cells to the minerals followed the sequence of citrate > tartrate > oxalate > acetate. The significant suppressive effects on P. putida adsorption were ascribed to the increased negative charges by adsorbed ligands and the competition of ligands with bacterial surface groups for binding sites. The inhibitive effects on P. putida adsorption by organic ligands were also dependent on the steric hindrance of the molecules. Acetate presented promotive effect on P. putida adsorption by kaolinite and goethite at low anion concentrations. The results obtained in this study suggested that the adsorption of bacteria in soils especially in the rhizosphere can significantly be impacted by various organic and inorganic anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号