首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The possibility of a frame-induced violation of Lorentz invariance due to non-inertial spin-1/2 particle motion is explored in detail for muon decay while in orbit near the event horizon of a microscopic Kerr black hole. It is explicitly shown that kinematic and curvature contributions to the muon’s decay spectrum—in the absence of any unforeseen processes due to quantum gravity—lead to its stabilization at the muon’s Compton wavelength scale. This example is emblematic of the search for unambiguous indicators to critically assess current and future approaches to quantum gravity research.  相似文献   

2.
Wave packet broadening in usual quantum mechanics is a consequence of dispersion behavior of the medium which the wave propagates in it. In this paper, we consider the problem of wave packet broadening in the framework of Generalized Uncertainty Principle(GUP) of quantum gravity. New dispersion relations are derived in the context of GUP and it has been shown that there exists a gravitational induced dispersion which leads to more broadening of the wave packets. As a result of these dispersion relations, a generalized Klein-Gordon equation is obtained and its interpretation is given.  相似文献   

3.
In this paper we point out some possible links between different approaches to quantum gravity and theories of the Planck scale physics. In particular, connections between loop quantum gravity, causal dynamical triangulations, Ho?ava–Lifshitz gravity, asymptotic safety scenario, Quantum Graphity, deformations of relativistic symmetries and nonlinear phase space models are discussed. The main focus is on quantum deformations of the Hypersurface Deformations Algebra and Poincaré algebra, nonlinear structure of phase space, the running dimension of spacetime and nontrivial phase diagram of quantum gravity. We present an attempt to arrange the observed relations in the form of a graph, highlighting different aspects of quantum gravity. The analysis is performed in the spirit of a mind map, which represents the architectural approach to the studied theory, being a natural way to describe the properties of a complex system. We hope that the constructed graphs (maps) will turn out to be helpful in uncovering the global picture of quantum gravity as a particular complex system and serve as a useful guide for the researchers.  相似文献   

4.
The quantum discrete kinetic equations are solved to study the propagation of plane waves in a system of composite particles with hard-sphere interactions and the filling factor (ν) being 1/2. We compare the dispersion relations thus obtained by the relevant Pauli-blocking parameter B which describes the different-statistics particles for the quantum analog of the discrete Boltzmann system when B is positive (Bose gases), zero (Boltzmann gases), and negative (Fermi Gases). We found, as the effective magnetic field being zero (ν = 1/2 using the composite fermion formulation), the electric field effect will induce anomalous dispersion relations.  相似文献   

5.
郑力明  王发强  刘颂豪 《物理学报》2007,56(4):2180-2183
运用量子薛定谔方程,通过计算传输光场干涉强度和分析量子密钥分发系统的误码率,研究了光纤色散和损耗对量子密钥分发系统误码率的影响.研究表明,在目前的基于光纤的量子密钥分发系统中,选择色散位移光纤并以损耗最小波长1.55 μm为工作波长,同时缩短脉冲宽度,可以有效提高量子密钥系统的传输距离. 关键词: 量子保密通信 量子密钥分发 光纤色散 光纤损耗  相似文献   

6.
光子晶体光纤的基模分析   总被引:7,自引:3,他引:4  
简化了光子晶体光纤的模式计算公式,计算了六角晶格光子晶体光纤的色散关系,对不同空气柱半径的色散作了比较,发现随着空气柱半径的增加,模式折射率变小,波导模式色散的零色散点向长波方向移动。  相似文献   

7.
It is argued that the blackhole information paradox originates from treating the blackhole geometry as strictly classical. It is further argued that the theory of quantum fields in a classical curved space with a horizon is an ill posed problem. If the geometry is allowed to fluctuate quantum mechanically, then the horizon effectively disappears. The sharp horizon emerges only in the classical limit when the ratio of the Compton wavelength of the black hole to its Schwarzschild radius vanishes. The region of strong gravity that develops when matter collapses to form the blackhole remains visible to the whole of spacetime and has to be described by a microscopic theory of strong gravity. The arguments imply that the information paradox is demoted from a paradox involving fundamental principles of physics to the problem of describing how matter at the highest densities gravitates.  相似文献   

8.
The non-commutativity of the space-time had important implications for the very early Universe, when its size was of the order of the Planck length. An important implication of this effect is the deformation of the standard dispersion relation of special relativity. Moreover, in the Planck regime gravity itself must be described by a quantum theory. We consider the implications of the modified dispersion relations for a photon gas, filling the early Universe, in the framework of loop quantum cosmology, a theoretical approach to quantum gravity. We consider three types of deformations of the dispersion relations of the photon gas, from which we obtain the Planck scale corrections to the energy density and pressure. The cosmological implications of the modified equations of state are explored in detail for all radiation models in the framework of the modified Friedmann equation of loop quantum cosmology. By numerically integrating the evolution equations we investigate the evolution of the basic cosmological parameters (scale factor, Hubble function, radiation temperature, and deceleration parameter) for a deformed photon gas filled Universe. In all models the evolution of the Universe shows the presence of a (nonsingular) bounce, corresponding to the transition from a contracting to an expanding phase.  相似文献   

9.
Though the Planck scale is encountered in quantum super-string theory and quantum gravity, it is the Compton scale of elementary particles that is encountered in the physical world. An explanation for this is given in terms of Brownian processes and the duality relation.  相似文献   

10.
The existence of a fundamental ultraviolet scale, such as the Planck scale, may lead to modifications of the dispersion relations for particles at high energies in some scenarios of quantum gravity. We apply effective field theory to this problem and identify dimension-5 operators that do not mix with dimensions 3 and 4 and lead to cubic modifications of dispersion relations for scalars, fermions, and vector particles. Further we show that, for electrons, photons and light quarks, clock comparison experiments bound these operators at 10(-5)/M(Pl).  相似文献   

11.
The characteristic sizes of astrophysical structures, up to the whole observed Universe, can be recovered, in principle, assuming that gravity is the overall interaction assembling systems starting from microscopic scales, whose order of magnitude is ruled by the Planck length and the related Compton wavelength. This result agrees with the absence of screening mechanisms for the gravitational interaction and could be connected to the presence of Yukawa corrections in the Newtonian potential which introduce typical interaction lengths. This result directly comes out from quantization of primordial black holes and then characteristic interaction lengths directly emerge from quantum field theory.  相似文献   

12.
There is a precise sense in which the requirement of background independence suffices to uniquely select the kinematics of loop quantum gravity (LQG). Specifically, the fundamental kinematic algebra of LQG admits a unique diffeomorphism invariant state. Although this result has been established rigorously, it comes as a surprise to researchers working with other approaches to quantum gravity. The goal of this article is to explain the underlying reasons in a pedagogical fashion using geometrodynamics, keeping the technicalities at their minimum. This discussion will bring out the surprisingly powerful role played by diffeomorphism invariance (and covariance) in non-perturbative, canonical quantum gravity.  相似文献   

13.
Many of us are familiar with Feynman’s “proof” of 1948, as revealed by Dyson, which demonstrates that Maxwell equations of electromagnetism are a consequence of Newton’s laws of motion of classical mechanics and the commutation relations of coordinate and momentum of quantum mechanics. It was Feynman’s purpose to explore the universality of dynamics of particles while making the fewest assumptions. We re-examine this formulation in the context of quantum gravity and show how Feynman’s derivation can be extended to include quantum gravity.  相似文献   

14.
A pedagogical introduction to some of the main ideas and results of field theories on quantized spacetimes is presented, with emphasis on what such field theories may teach us about the problem of quantizing gravity. We examine to what extent noncommutative gauge theories may be regarded as gauge theories of gravity. UV/IR mixing is explained in detail and we describe its relations to renormalization, to gravitational dynamics, and to deformed dispersion relations in models of quantum spacetime of interest in string theory and in doubly special relativity. We also discuss some potential experimental probes of spacetime noncommutativity.  相似文献   

15.
Differential geometric formulation of quantum gauge theory of gravity is studied in this paper. The quantumgauge theory of gravity is formulated completely in the framework of traditional quantum field theory. In order to studythe relationship between quantum gauge theory of gravity and traditional quantum gravity which is formulated in curvedspace, it is important to set up the geometry picture of quantum gauge theory of gravity. The correspondence betweenquantum gauge theory of gravity and differential geometry is discussed and the geometry picture of quantum gaugetheory of gravity is studied.  相似文献   

16.
Lattice waves including a longitudinal wave and a transverse wave in two-dimensional hexagonal quantum plasma crystals are investigated by using the modified Debye-Hückel screening potential. It is shown that there exists an unstable region of lattice parameters, where the system will melt. The general dispersion relations are derived, and the waves propagating parallel to a primitive translation vector are discussed. We find that both the longitudinal and transverse waves are acoustic-like, and the longitudinal wave has a greater sound speed than that of the transverse wave in the long wavelength limit region.  相似文献   

17.
On the kinematics of the torsion of space-time   总被引:1,自引:0,他引:1  
On a macroscopic level we take general relativity as the appropriate theory of space-time and gravity. We will argue that, on a more microscopic level, in the Compton wavelength regime of elementary particles, there are good reasons for suspecting the presence of a torsion of space-time. A corresponding gaugetheoretical formalism related to the Poincaré group is reviewed, and the kinematical consequences of the presence of a torsion are worked out. In particular we discuss the operational meaning and the measurability of torsion. The dynamics of torsion is left for a forthcoming article.  相似文献   

18.
Qiang Wu  Tao Zhu 《理论物理通讯》2019,71(9):1115-1120
Recently proposed two swampland criteria that arising from string theory landscape leads to the important challenge of the realization of single-field inflationary models. Especially one of swampland criteria which implies a large tensor-to-scalar ratio is strongly in tension with recent observational results. In this paper, we explore the possibility the swampland conjectures could be compatible with single-field inflationary scenarios if the effects due to the quantum theory of gravity are considered. We show that the quantum gravitational effects due to the nonlinear dispersion relation provides significant modifications on the amplitude of both the scalar and tensor perturbation spectra. Such modifications could be either raise or reduce the perturbation spectra depending on the values of the parameters in the nonlinear terms of the dispersion relations. Therefore, these effects can reduce the tensor-to-scalar ratio to a smaller value, which helps to relax the tension between the swampland conjecture and observational data.  相似文献   

19.
20.
In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号