首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 403 毫秒
1.
Measurements in the vicinity of a stagnation point   总被引:1,自引:0,他引:1  
This paper presents measurements of a plane jet impinging onto a normal flat plate placed up to five jet widths from the jet outlet. The small spacing ensured that the stagnation streamline remained in the potential core of the jet. The plate shear stress distribution compared well to that from an analytical solution for the laminar development of the plate boundary layer whose external velocity was determined from the measured pressure. By comparing the shear stress measured under the present low level of free stream turbulence (0.35%) at the jet exit with that of Tu and Wood [Exp. Thermal Fluid Sci. 13 (1996) 364–373] made at about 4%, it is concluded that the turbulence level at the nozzle exit has only a second-order influence on the surface shear stress around the stagnation point. Some spanwise non-uniformity was observed in the plate shear stress, but this was confined largely to the transition region. The mean velocity, Reynolds stresses, and fluctuating pressure were measured along the stagnation streamline using a fast-response pressure probe. A significant increase in the streamwise normal stress and the mean square of the pressure fluctuations occurred before they were eventually attenuated by the plate. This increase occurred in the region where the streamwise velocity was decreasing close to the plate causing extra energy production through the normal stresses. Spectra of the velocity and pressure fluctuations showed that the increase in level was mainly due to the low frequency motion, whereas the subsequent decrease occurred at higher frequencies.  相似文献   

2.
The near field mean flow and turbulence characteristics of a turbulent jet of air issuing from a sharp-edged isosceles triangular orifice into still air surroundings have been examined experimentally using hot-wire anemometry and a pitot-static tube. For comparison, some measurements were made in an equilateral triangular free jet and in a round free air jet, both of which also issued from sharp-edged orifices. The Reynolds number, based on the orifice equivalent diameter, was 1.84×105 in each jet. The three components of the mean velocity vector, the Reynolds normal and primary shear stresses, the one-dimensional energy spectra of the streamwise fluctuating velocity signals and the mean static pressure were measured. The mean streamwise vorticity, the half-velocity widths, the turbulence kinetic energy and the local shear in the mean streamwise velocity were obtained from the measured data. It was found that near field mixing in the equilateral triangular jet is faster than in the isosceles triangular and round jets. The mean streamwise vorticity field was found to be dominated by counter-rotating pairs of vortices, which influenced mixing and entrainment in the isosceles triangular jet. The one-dimensional energy spectra results indicated the presence of coherent structures in the near field of all three jets and that the equilateral triangular jet was more energetic than the isosceles triangular and round jets.  相似文献   

3.
Two-equation models that treat the transport equations for two variables are typical models for the Reynolds-averaged Navier–Stokes equation. Compared to the equation for the turbulent kinetic energy, the equation for the second variable such as the dissipation rate does not have a theoretical analogue. In this work, the exact transport equation for the eddy diffusivity was derived and examined for better understanding turbulence and improving two-equation models. A new length scale was first introduced, which involves the response function for the scalar fluctuation. It was shown that the eddy diffusivity can be expressed as the correlation between the velocity fluctuation and the new length scale. The transport equations for the eddy diffusivity and the length-scale variance were derived theoretically. Statistics such as terms in the transport equations were evaluated using the direct numerical simulation of turbulent channel flow. It was shown that the streamwise component of the eddy diffusivity is greater than the other two components in the whole region. In the transport equation for the eddy diffusivity, the production term due to the Reynolds stress is a main positive term, whereas the pressure–length-gradient correlation term plays a role of destruction. It is expected that the analysis of the transport equations is helpful in developing better turbulence models.  相似文献   

4.
In this paper we report on (two-component) LDV experiments in a fully developed turbulent pipe flow with a drag-reducing polymer (partially hydrolyzed polyacrylamide) dissolved in water. The Reynolds number based on the mean velocity, the pipe diameter and the local viscosity at the wall is approximately 10000. We have used polymer solutions with three different concentrations which have been chosen such that maximum drag reduction occurs. The amount of drag reduction found is 60–70%. Our experimental results are compared with results obtained with water and with a very dilute solution which exhibits only a small amount of drag reduction. We have focused on the observation of turbulence statistics (mean velocities and turbulence intensities) and on the various contributions to the total shear stress. The latter consists of a turbulent, a solvent (viscous) and a polymeric part. The polymers are found to contribute significantly to the total stress. With respect to the mean velocity profile we find a thickening of the buffer layer and an increase in the slope of the logarithmic profile. With respect to the turbulence statistics we find for the streamwise velocity fluctuations an increase of the root mean square at low polymer concentration but a return to values comparable to those for water at higher concentrations. The root mean square of the normal velocity fluctuations shows a strong decrease. Also the Reynolds (turbulent) shear stress and the correlation coefficient between the stream wise and the normal components are drastically reduced over the entire pipe diameter. In all cases the Reynolds stress stays definitely non-zero at maximum drag reduction. The consequence of the drop of the Reynolds stress is a large polymer stress, which can be 60% of the total stress. The kinetic-energy balance of the mean flow shows a large transfer of energy directly to the polymers instead of the route by turbulence. The kinetic energy of the turbulence suggests a possibly negative polymeric dissipation of turbulent energy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Measurements of turbulent flow in a channel at low Reynolds numbers   总被引:1,自引:0,他引:1  
Normal and streamwise components of the velocity fields of turbulent flow in a channel at low Reynolds numbers have been measured with laser-Doppler techniques. The experiments duplicate the conditions used in current direct numerical simulations of channel flow, and good, but not exact, agreement is found for single-point moments through fourth order. In order to eliminate LDV velocity bias and to measure velocity spectra, the mean time interval between LDV signals was adjusted to be much smaller than the smallest turbulence time scale. Spectra of the streamwise and normal components of velocity at locations spanning the channel are presented.  相似文献   

6.
The process of laminar to turbulent transition induced by a von Karman vortex street wake, was studied for the case of a flat plate boundary layer. The boundary layer developed under zero pressure gradient conditions. The vortex street was generated by a cylinder positioned in the free stream. An X-type hot-wire probe located in the boundary layer, measured the streamwise and normal to the wall velocity components. The measurements covered two areas; the region of transition onset and development and the region where the wake and the boundary layer merged producing a turbulent flow. The evolution of Reynolds stresses and rms-values of velocity fluctuations along the transition region are presented and discussed. From the profiles of the Reynolds stress and the mean velocity profile, a ‘negative' energy production region along the transition region, was identified. A quadrant splitting analysis was applied to the instantaneous Reynolds stress signals. The contributions of the elementary coherent structures to the total Reynolds stress were evaluated, for several x-positions of the near wall region. Distinct regions in the streamwise and normal to the wall directions were identified during the transition.  相似文献   

7.
暖季强降雨对多年冻土南界斜坡路基稳定性影响分析   总被引:2,自引:0,他引:2  
蔡书鹏  杨林  唐川林 《力学学报》2008,40(2):250-254
为阐明表面活性剂水溶液的减阻作用,使用LDV对零压梯度的二维湍流平板边界层中的CTAB 表面活性剂水溶液的湍流特性进行了实验研究. 结果表明:与牛顿流体相比,CTAB水溶液边 界层的粘性底层增厚;主流时均速度分布有被层流化的趋势,对数分布域上移;主流方向速 度湍动强度峰值减小,且远离壁面,在靠近边界层中部,出现第2峰值;垂直于主流方向的 速度湍动强度受到了大幅度抑制,雷诺应力沿着边界层厚度方向几乎为零. 结果说明CTAB 水溶液具有减弱湍流湍动各个成分相关度的作用,从而能够使雷诺应力降低、湍流能量生成 项减小最终降低流体的输送动力.  相似文献   

8.
An experimental study has been carried out of the low speed Coanda wall jet with both streamwise and axisymmetric curvature. A single component laser Doppler technique was used, and by taking several orientations at a given point, values of the three mean velocities and five of the six Reynolds stresses were obtained. The lateral divergence and convex streamwise curvature both enhanced the turbulence in the outer part of the jet compared with a plane two-dimensional wall jet. The inner layer exhibited a large separation of the positions of maximum velocity and zero shear stress. It was found that the streamwise mean velocity profile became established very rapidly downstream of the slot exit. The profile appeared fairly similar at later downstream positions, but the mean radial velocity and turbulence parameters showed the expected nonself preservation of the flow. Removal of the streamwise curvature resulted in a general return of the jet conditions toward those expected of a plane wall jet. The range and accuracy of the data may be used for developing turbulence models and computational techniques for this type of flow.  相似文献   

9.
An improved version of the four-hole directional pressure probe, or Cobra probe, is described, in which the frequency response has been extended to 1.5 kHz. The probe measures all three orthogonal mean and turbulent velocity components at a point in the flow field. The probe also resolves the local mean and turbulent components of static pressure, allowing moments between the fluctuating velocity components and pressure to be determined. The techniques developed to allow the improved frequency response and the use of the probe in turbulent, developed pipe flow (a calibration flow) are described. Also given are the turbulent pressure-velocity correlations, which show a high degree of anticorrelation for one velocity component.  相似文献   

10.
Measurements of the mean velocity and turbulence intensity are presented for a rectangular jet of water ejecting into a gaseous ambient. Data are reported for streamwise locations up to 30 nozzle widths from the discharge and spanwise locations covering the inner 80% of the jet width. The flow conditions at the nozzle discharge were controlled by using different nozzle designs (parallel-plate and converging) and flow manipulators (wire grid and screens). The results track the mean velocity and turbulence intensity profiles with streamwise distance, highlighting changes in both the profile shapes and magnitudes for both measured quantities. Independent of nozzle configuration, the mean velocity profile was shown to be most nonuniform and the turbulence intensity most nonhomogeneous at the nozzle discharge. With increasing streamwise distance, the mean velocity profile underwent a gradual transition to a completely uniform condition, while the turbulence field decayed and became homogeneous. The rate of viscous dissipation was shown to depend strongly on the nozzle exit condition. This work was supported by the National Science Foundation under grant numbers CTS-8912831 and CTS-9307232  相似文献   

11.
This paper investigates the layered structure of a turbulent plane wall jet at a distance from the nozzle exit. Based on the force balances in the mean momentum equation, the turbulent plane wall jet is divided into three regions: a boundary layer-like region (BLR) adjacent to the wall, a half free jet-like region (HJR) away from the wall, and a plug flow-like region (PFR) in between. In the PFR, the mean streamwise velocity is essentially the maximum velocity, and the simplified mean continuity and mean momentum equations result in a linear variation of the mean wall-normal velocity and Reynolds shear stress. In the HJR, as in a turbulent free jet, a proper scale for the mean wall-normal flow is the mean wall-normal velocity far from the wall and a proper scale for the Reynolds shear stress is the product of the maximum mean streamwise velocity and the velocity scale for the mean wall-normal flow. The BLR region can be divided into four sub-layers, similar to those in a canonical pressure-driven turbulent channel flow or shear-driven turbulent boundary layer flow. Building on the log-law for the mean streamwise velocity in the BLR, a new skin friction law is proposed for a turbulent wall jet. The new prediction agrees well with the correlation of Bradshaw and Gee (1960) over moderate Reynolds numbers, but gives larger skin frictions at higher Reynolds numbers.  相似文献   

12.
The results of measurements of all three components of the mean velocity vector, the Reynolds normal and primary shear stresses and the mean static pressure in a turbulent free jet, issuing from a sharp-edged cruciform orifice, are presented in this paper. The measurements were made with an x-array hot-wire probe and a pitot-static tube in the near flow field of the jet. The Reynolds number, based upon the equivalent diameter of the orifice, was 1.70 × 105. In addition to the quantities measured directly, the mean streamwise centreline velocity decay, the jet half-velocity widths, the jet spreading rate, the mean streamwise vorticity, the mass entrainment rate, the integral momentum flux and the one-dimensional energy spectra have been derived from the measured data. The results show that the mean streamwise centreline velocity decay rate of the cruciform jet is higher than that of a round jet issuing from an orifice with the same exit area as that of the cruciform orifice. The mean streamwise velocity field changed shape continuously from a cruciform close to the orifice exit plane to circular at 12 and half equivalent diameters downstream. The mean streamwise vorticity field, up to about three equivalent diameters downstream of the orifice exit plane, consists of four pairs of counter-rotating cells, which are aligned with the four edges in the centre of the cruciform orifice.  相似文献   

13.
It is known from smoke visualizations that in a transitional boundary layer subjected to free-stream turbulence, streaks appear and eventually break down to turbulence after wavy motions. In order to observe the streaky structures directly, a stereo particle-tracking velocimetry system using hydrogen bubbles in a water channel has been developed and validated against laser Doppler velocimetry. Mean flow statistics show good agreement with previous results. With the developed measurement system, the instantaneous spanwise distribution of the streamwise and wall-normal velocities can be measured fast enough to resolve the time development of the streaky structures. Measurements of instantaneous spanwise distributions of the streamwise and wall-normal velocity disturbances show strong negative correlation between the wall-normal and streamwise velocities in the streaks. Published online: 19 November 2002  相似文献   

14.
An experimental study was carried out to investigate the effect of local ultrasonic forcing on a turbulent boundary layer. The ultrasonic forcing system was constructed by adhering six ultrasonic transducers to a flat plate over which water was flowed. In this system, the ultrasonic waves projected into the water by the transducers caused cavitation, giving rise to an enormous number of tiny water-vapor bubbles. Stereoscopic particle image velocimetry (SPIV) was used to probe the flow characteristics. The SPIV results showed that imposition of the ultrasonic forcing caused a substantial increase in the mean wall-normal velocity but a decrease in the mean streamwise velocity. The ultrasonic forcing reduced the skin friction coefficient by up to 60% immediately downstream of the transducers; this effect gradually dissipated with moving downstream. The streamwise turbulence intensity was reduced near the wall but increased away from the wall, whereas the wall-normal turbulence intensity was not much affected near the wall but increased away from the wall. The Reynolds shear stress and the production of turbulent kinetic energy were reduced near the wall. Imposition of the ultrasonic forcing shifted the streamwise vortical structures away from the wall, leading to a reduction in skin friction.  相似文献   

15.
Wind tunnel turbulence generated by a conventional and two multi-scale grids has been investigate. The grids were all designed to produce turbulence with the same integral scale, so that a direct comparison could be made between the flows, both in physical and scaled space. It has been suggested in the literature (e.g. Hurst and Vassilicos, 2007) that for a particular class of multi fractal grids, the turbulence decay depends exponentially on the distance from the grid. After a short distance where the flow is highly dependent of the geometry, it was found that the exponential decay is not unique to a particular geometry, but may be found over the same streamwise distances also behind the multi-scale grids, as well as for the conventional grid.By comparing the probability density functions measured using laser Doppler and hot wire anemometry it is shown that hot wire measurements may contain severe errors if taken too close to the grid. It is shown that negative streamwise velocity components may occasionally be found as far as 10 times the mesh widths downstream of the grid. Since hot wire anemometry is not able to measure the sign of the velocity vector, this leads to a folding of the data which artificially increases the derived mean velocity and, more seriously, reduces the width of the probability distribution. Hence the interpreted turbulent stress is reduced.  相似文献   

16.
Cetyltrimethyl ammonium chloride (CTAC) surfactant additives, because of their long-life characteristics, can be used as promising drag-reducers in district heating and cooling systems. In the present study we performed both numerical and experimental tests for a 75 ppm CTAC surfactant drag-reducing channel flow. A two-component PIV system was used to measure the instantaneous streamwise and wall-normal velocity components. A Giesekus constitutive equation was adopted to model the extra stress due to the surfactant additives, with the constitutive parameters being determined by well-fitting apparent shear viscosities, as measured by an Advanced Rheometric Expansion System (ARES) rheometer. In the numerical study, we connected the realistic rheological properties with the drag-reduction rate. This is different from previous numerical studies in which the model parameters were set artificially. By performing consistent comparisons between numerical and experimental results, we have obtained an insight into the mechanism of the additive-induced drag-reduction phenomena.

Our simulation showed that the addition of surfactant additives introduces several changes in turbulent flow characteristics: (1) In the viscous sublayer, the mean velocity gradient becomes gentler due to the viscoelastic forces introduced by the additives. The buffer layer becomes expanded and the slope of the velocity profile in the logarithmic layer increases. (2) The locations where the streamwise velocity fluctuation and Reynolds shear stress attain their maximum value shifted from the wall region to the bulk flow region. (3) The root-mean-square velocity fluctuations in the wall-normal direction decrease for the drag-reducing flow. (4) The Reynolds shear stress decreases dramatically and the deficit of the Reynolds shear stress is mainly compensated by the viscoelastic shear stress. (5) The turbulent production becomes much smaller and its peak-value position moves toward the bulk flow region. All of these findings agree qualitatively with experimental measurements.

Regarding flow visualization, the violent streamwise vortices in the near wall region become dramatically suppressed, indicating that the additives weaken the ejection and sweeping motion, and thereby inhibit the generation of turbulence. The reduction in turbulence is accomplished by additive-introduced viscoelastic stress. Surfactant additives have dual effects on frictional drag: (1) introduce viscoelastic shear stress, which increases frictional drag; and (2) dampen the turbulent vortical structures, decrease the turbulent shear stress, and then decrease the frictional drag. Since the second effect is greater than the first one, drag-reduction occurs.  相似文献   


17.
The present experimental investigation is devoted to the mixing characteristics of a passive scalar in the near-field region of a moderately swirling jet issuing from a fully developed axially rotating pipe flow. Instantaneous streamwise and azimuthal velocity components as well as the temperature were simultaneously accessed by means of a combined X-wire and cold-wire probe. The results indicate a modification of the turbulence structures to that effect that the swirling jet spreads, mixes and evolves faster compared to its non-swirling counterpart. The high correlation between streamwise velocity and temperature fluctuations as well as the streamwise passive scalar flux are even more enhanced due to the addition of swirl, which in turn shortens the distance and hence time needed to mix the jet with the ambient air.  相似文献   

18.
 The Reynolds-averaged flow for a solid/free-surface juncture boundary layer and wake is documented. The three mean-velocity components and five of the Reynolds stresses are measured for a surface-piercing flat plate in a towing tank using a laser-Doppler velocimeter system for both boundary-layer and wake planes in regions close to the free surface. The experimental method is described, including the foil-plate model, laser-Doppler velocimeter system, conditions, and uncertainty analysis. The underlying flow data is in excellent agreement with benchmark data. Inner (near the plate and wake centerplane and below the free surface) and outer (near the free surface) regions of high streamwise vorticity of opposite sign are observed, which transport, respectively, high mean velocity and low turbulence from the outer to the inner and low mean velocity and high turbulence from the inner to the outer portions of the boundary layer and wake. For the wake, the inner region of vorticity is relatively weak. The physical mechanism for the streamwise vorticity is analyzed with regard to the Reynolds-averaged streamwise vorticity equation. The anisotropy of the crossplane normal Reynolds stresses closely correlates with the vorticity and, additionally, indicates similarity, i.e., its nature is such that it only depends on the proximity to the plate and free surface boundaries or wake centerplane symmetry plane. Free-surface effects on the Reynolds stresses are analyzed with regard to the behavior close to the free surface of the turbulent kinetic energy and the normal components of the anisotropy tensor and the anisotropy invariants. Close to the free surface, the turbulent kinetic energy is nearly constant and increases for the inner and outer portions, respectively, of the boundary layer and wake and the normal components of the anisotropy tensor and the anisotropy invariants roughly correspond to the limiting values for two-component turbulence. The similarities and differences between the present results and analysis with those from related studies are discussed. The data and analysis should have practical application with regard to the development of turbulence models for computational fluid dynamics methods for the Reynolds-averaged Navier–Stokes equations. Received: 27 May 1997/Accepted: 1 August 1997  相似文献   

19.
章光华  符松 《力学学报》2000,32(2):141-150
基于对可压缩湍流中脉动压力场和脉动速度场特征的理论分析以及DNS结果,建立了可均匀剪切湍流中压力-变形率关联的压缩性修正模式,应用这个模式,加上Sarkar等建立的脉动体胀率项(dilatational terms)的模式,预测可压缩均匀剪切湍流随时间的发展,所得雷诺应力各是性张量的平衡值与Blaisdell等的DNS数据非常一致。这个模式准确地预测出均匀剪切湍流中压缩性导致的雷诺应力结构的“流向  相似文献   

20.
This paper is concerned with the validation of a four-hole pressure probe, known as a cobra probe, for turbulence measurement. For the first time in the literature, third- and fourth-order velocity correlations measured using a pressure probe are presented. The probe measurements are compared with established data for fully developed pipe flow, and good agreement is found. A new probe calibration methodology and improvements to the data acquisition and processing system are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号