首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The mean field limit of large-population symmetric stochastic differential games is derived in a general setting, with and without common noise, on a finite time horizon. Minimal assumptions are imposed on equilibrium strategies, which may be asymmetric and based on full information. It is shown that approximate Nash equilibria in the n-player games admit certain weak limits as n tends to infinity, and every limit is a weak solution of the mean field game (MFG). Conversely, every weak MFG solution can be obtained as the limit of a sequence of approximate Nash equilibria in the n-player games. Thus, the MFG precisely characterizes the possible limiting equilibrium behavior of the n-player games. Even in the setting without common noise, the empirical state distributions may admit stochastic limits which cannot be described by the usual notion of MFG solution.  相似文献   

2.
We introduce natural strategic games on graphs, which capture the idea of coordination in a local setting. We study the existence of equilibria that are resilient to coalitional deviations of unbounded and bounded size (i.e., strong equilibria and k-equilibria respectively). We show that pure Nash equilibria and 2-equilibria exist, and give an example in which no 3-equilibrium exists. Moreover, we prove that strong equilibria exist for various special cases. We also study the price of anarchy (PoA) and price of stability (PoS) for these solution concepts. We show that the PoS for strong equilibria is 1 in almost all of the special cases for which we have proven strong equilibria to exist. The PoA for pure Nash equilbria turns out to be unbounded, even when we fix the graph on which the coordination game is to be played. For the PoA for k-equilibria, we show that the price of anarchy is between \(2(n-1)/(k-1) - 1\) and \(2(n-1)/(k-1)\). The latter upper bound is tight for \(k=n\) (i.e., strong equilibria). Finally, we consider the problems of computing strong equilibria and of determining whether a joint strategy is a k-equilibrium or strong equilibrium. We prove that, given a coordination game, a joint strategy s, and a number k as input, it is co-NP complete to determine whether s is a k-equilibrium. On the positive side, we give polynomial time algorithms to compute strong equilibria for various special cases.  相似文献   

3.
In the field of cooperative games with restricted cooperation, various restrictions on coalition formation are studied. The most studied restrictions are those that arise from restricted communication and hierarchies. This survey discusses several models of hierarchy restrictions and their relation with communication restrictions. In the literature, there are results on game properties, Harsanyi dividends, core stability, and various solutions that generalize existing solutions for TU-games. In this survey, we mainly focus on axiomatizations of the Shapley value in different models of games with a hierarchically structured player set, and their applications. Not only do these axiomatizations provide insight in the Shapley value for these models, but also by considering the types of axioms that characterize the Shapley value, we learn more about different network structures. A central model of games with hierarchies is that of games with a permission structure where players in a cooperative transferable utility game are part of a permission structure in the sense that there are players that need permission from other players before they are allowed to cooperate. This permission structure is represented by a directed graph. Generalizations of this model are, for example, games on antimatroids, and games with a local permission structure. Besides discussing these generalizations, we briefly discuss some applications, in particular auction games and hierarchically structured firms.  相似文献   

4.
Using the existence results in Kajii (J Econ Theory 56:194–205, 1992), we identify a class of n-person noncooperative games containing a dense residual subset of games whose cooperative equilibria are all essential. Moreover, we show that every game in this collection possesses an essential component of the \(\alpha \)-core by proving the connectivity of minimal essential subsets of the \(\alpha \)-core.  相似文献   

5.
We consider a class of quasilinear elliptic systems of PDEs consisting of N Hamilton–Jacobi–Bellman equations coupled with N divergence form equations, generalising to N > 1 populations the PDEs for stationary Mean-Field Games first proposed by Lasry and Lions. We provide a wide range of sufficient conditions for the existence of solutions to these systems: either the Hamiltonians are required to behave at most linearly for large gradients, as it occurs when the controls of the agents are bounded, or they must grow faster than linearly and not oscillate too much in the space variables, in a suitable sense. We show the connection of these systems with the classical strongly coupled systems of Hamilton–Jacobi–Bellman equations of the theory of N-person stochastic differential games studied by Bensoussan and Frehse. We also prove the existence of Nash equilibria in feedback form for some N-person games.  相似文献   

6.
We consider two-stage multi-leader-follower games, called multi-leader-follower games with vertical information, where leaders in the first stage and followers in the second stage choose simultaneously an action, but those chosen by any leader are observed by only one “exclusive” follower. This partial unobservability leads to extensive form games that have no proper subgames but may have an infinity of Nash equilibria. So it is not possible to refine using the concept of subgame perfect Nash equilibrium and, moreover, the concept of weak perfect Bayesian equilibrium could be not useful since it does not prescribe limitations on the beliefs out of the equilibrium path. This has motivated the introduction of a selection concept for Nash equilibria based on a specific class of beliefs, called passive beliefs, that each follower has about the actions chosen by the leaders rivals of his own leader. In this paper, we illustrate the effectiveness of this concept and we investigate the existence of such a selection for significant classes of problems satisfying generalized concavity properties and conditions of minimal character on possibly discontinuous data.  相似文献   

7.
In L 2(?3;?3), we consider a self-adjoint operator ? ε , ε > 0, generated by the differential expression curl η(x/ε)?1 curl??ν(x/ε) div. Here the matrix function η(x) with real entries and the real function ν(x) are periodic with respect to some lattice, are positive definite, and are bounded. We study the behavior of the operators cos(τ? ε 1/2 ) and ? ε ?1/2 sin(τ? ε 1/2 ) for τ ∈ ? and small ε. It is shown that these operators converge to cos(τ(?0)1/2) and (?0)?1/2 sin(τ(?0)1/2), respectively, in the norm of the operators acting from the Sobolev space H s (with a suitable s) to ?2. Here ?0 is an effective operator with constant coefficients. Error estimates are obtained and the sharpness of the result with respect to the type of operator norm is studied. The results are used for homogenizing the Cauchy problem for the model hyperbolic equation ? τ 2 v ε = ?? ε v ε , div v ε = 0, appearing in electrodynamics. We study the application to a nonstationary Maxwell system for the case in which the magnetic permeability is equal to 1 and the dielectric permittivity is given by the matrix η(x/ε).  相似文献   

8.
We consider a self-adjoint matrix elliptic operator A ε, ε > 0, on L 2(R d ;C n ) given by the differential expression b(D)*g(x/ε)b(D). The matrix-valued function g(x) is bounded, positive definite, and periodic with respect to some lattice; b(D) is an (m × n)-matrix first order differential operator such that mn and the symbol b(ξ) has maximal rank. We study the operator cosine cos(τA ε 1/2 ), where τ ∈ R. It is shown that, as ε → 0, the operator cos(τA ε 1/2 ) converges to cos(τ(A 0)1/2) in the norm of operators acting from the Sobolev space H s (R d ;C n ) (with a suitable s) to L 2(R d ;C n ). Here A 0 is the effective operator with constant coefficients. Sharp-order error estimates are obtained. The question about the sharpness of the result with respect to the type of the operator norm is studied. Similar results are obtained for more general operators. The results are applied to study the behavior of the solution of the Cauchy problem for the hyperbolic equation ? τ 2 u ε (x, τ) = ?A ε u ε (x, τ).  相似文献   

9.
In this paper, we address the problem of estimating a multidimensional density f by using indirect observations from the statistical model Y = X + ε. Here, ε is a measurement error independent of the random vector X of interest and having a known density with respect to Lebesgue measure. Our aim is to obtain optimal accuracy of estimation under \({\mathbb{L}_p}\)-losses when the error ε has a characteristic function with a polynomial decay. To achieve this goal, we first construct a kernel estimator of f which is fully data driven. Then, we derive for it an oracle inequality under very mild assumptions on the characteristic function of the error ε. As a consequence, we getminimax adaptive upper bounds over a large scale of anisotropic Nikolskii classes and we prove that our estimator is asymptotically rate optimal when p ∈ [2,+∞]. Furthermore, our estimation procedure adapts automatically to the possible independence structure of f and this allows us to improve significantly the accuracy of estimation.  相似文献   

10.
The functional equation f(x,ε) = 0 containing a small parameter ε and admitting regular and singular degeneracy as ε → 0 is considered. By the methods of small parameter, a function x n 0(ε) satisfying this equation within a residual error of O(ε n+1) is found. A modified Newton’s sequence starting from the element x n 0(ε) is constructed. The existence of the limit of Newton’s sequence is based on the NK theorem proven in this work (a new variant of the proof of the Kantorovich theorem substantiating the convergence of Newton’s iterative sequence). The deviation of the limit of Newton’s sequence from the initial approximation x n 0(ε) has the order of O(ε n+1), which proves the asymptotic character of the approximation x n 0(ε). The method proposed is implemented in constructing an asymptotic approximation of a system of ordinary differential equations on a finite or infinite time interval with a small parameter multiplying the derivatives, but it can be applied to a wider class of functional equations with a small parameters.  相似文献   

11.
This paper introduces a class of games, called unit-sphere games, in which strategies are real vectors with unit 2-norms (or, on a unit-sphere). As a result, they should no longer be interpreted as probability distributions over actions, but rather be thought of as allocations of one unit of resource to actions and the payoff effect on each action is proportional to the square root of the amount of resource allocated to that action. The new definition generates a number of interesting consequences. We first characterize the sufficient and necessary condition under which a two-player unit-sphere game has a Nash equilibrium. The characterization reduces solving a unit-sphere game to finding all eigenvalues and eigenvectors of the product matrix of individual payoff matrices. For any unit-sphere game with non-negative payoff matrices, there always exists a unique Nash equilibrium; furthermore, the unique equilibrium is efficiently reachable via Cournot adjustment. In addition, we show that any equilibrium in positive unit-sphere games corresponds to approximate equilibria in the corresponding normal-form games. Analogous but weaker results are obtained in n-player unit-sphere games.  相似文献   

12.
Let O ? R d be a bounded domain of class C 1,1. Let 0 < ε - 1. In L 2(O;C n ) we consider a positive definite strongly elliptic second-order operator B D,ε with Dirichlet boundary condition. Its coefficients are periodic and depend on x/ε. The principal part of the operator is given in factorized form, and the operator has lower order terms. We study the behavior of the generalized resolvent (B D,ε ? ζQ 0(·/ε))?1 as ε → 0. Here the matrix-valued function Q 0 is periodic, bounded, and positive definite; ζ is a complex-valued parameter. We find approximations of the generalized resolvent in the L 2(O;C n )-operator norm and in the norm of operators acting from L 2(O;C n ) to the Sobolev space H 1(O;C n ) with two-parameter error estimates (depending on ε and ζ). Approximations of the generalized resolvent are applied to the homogenization of the solution of the first initial-boundary value problem for the parabolic equation Q 0(x/ε)? t v ε (x, t) = ?(B D,ε v ε )(x, t).  相似文献   

13.
In this paper we derive a multi-choice TU game from r-replica of exchange economy with continuous, concave and monetary utility functions, and prove that the cores of the games converge to a subset of the set of Edgeworth equilibria of exchange economy as r approaches to infinity. We prove that the dominance core of each balanced multi-choice TU game, where each player has identical activity level r, coincides with the dominance core of its corresponding r-replica of exchange economy. We also give an extension of the concept of the cover of the game proposed by Shapley and Shubik (J Econ Theory 1: 9-25, 1969) to multi-choice TU games and derive some sufficient conditions for the nonemptyness of the core of multi-choice TU game by using the relationship among replica economies, multi-choice TU games and their covers.  相似文献   

14.
We consider an operator Aε on L2(\({\mathbb{R}^{{d_1}}} \times {T^{{d_2}}}\)) (d1 is positive, while d2 can be zero) given by Aε = ?div A(ε?1x1,x2)?, where A is periodic in the first variable and smooth in a sense in the second. We present approximations for (Aε ? μ)?1 and ?(Aε ? μ)?1 (with appropriate μ) in the operator norm when ε is small. We also provide estimates for the rates of approximation that are sharp with respect to the order.  相似文献   

15.
We study geometrical properties of the ridge function manifold \(\mathcal{R}_n\) consisting of all possible linear combinations of n functions of the form g(a· x), where a·x is the inner product in \({\mathbb R}^d\). We obtain an estimate for the ε-entropy numbers in terms of smaller ε-covering numbers of the compact class G n,s formed by the intersection of the class \(\mathcal{R}_n\) with the unit ball \(B\mathcal{P}_s^d\) in the space of polynomials on \({\mathbb R}^d\) of degree s. In particular we show that for n?≤?s d???1 the ε-entropy number H ε (G n,s,L q ) of the class G n,s in the space L q is of order nslog1/ε (modulo a logarithmic factor). Note that the ε-entropy number \(H_\varepsilon(B\mathcal{P}_s^d,L_q)\) of the unit ball is of order s d log1/ε. Moreover, we obtain an estimate for the pseudo-dimension of the ridge function class G n,s.  相似文献   

16.
We present several numerical methods and establish their error estimates for the discretization of the nonlinear Dirac equation(NLDE) in the nonrelativistic limit regime, involving a small dimensionless parameter 0 ε≤ 1 which is inversely proportional to the speed of light. In this limit regime, the solution is highly oscillatory in time, i.e., there are propagating waves with wavelength O(ε~2) and O(1) in time and space,respectively. We begin with the conservative Crank-Nicolson finite difference(CNFD) method and establish rigorously its error estimate which depends explicitly on the mesh size h and time step τ as well as the small parameter 0 ε≤ 1. Based on the error bound, in order to obtain ‘correct' numerical solutions in the nonrelativistic limit regime, i.e., 0 ε■ 1, the CNFD method requests the ε-scalability: τ = O(ε~3) and h= O(ε~(1/2)). Then we propose and analyze two numerical methods for the discretization of NLDE by using the Fourier spectral discretization for spatial derivatives combined with the exponential wave integrator and timesplitting technique for temporal derivatives, respectively. Rigorous error bounds for the two numerical methods show that their ε-scalability is improved to τ = O(ε~2) and h = O(1) when 0 ε■1. Extensive numerical results are reported to confirm our error estimates.  相似文献   

17.
We study the spectrum of a model three-particle Schrödinger operator H(ε), ε > 0. We prove that for a sufficiently small ε > 0, this operator has no bound states and no two-particle branches of the spectrum. We also obtain an estimate for the small parameter ε.  相似文献   

18.
Behavior of solutions of variational inequalities for a biharmonic operator is studied. These inequalities correspond to one-sided constraints on subsets of a domain Ω placed ε-periodically. All possible behavior types of solutions u ε of variational inequalities are considered for ε → 0 depending on relations between small parameters, which are the structure period ε and the contraction coefficient a ε of subsets where one-sided constraints are posed.  相似文献   

19.
We consider a self-adjoint elliptic operator Aε, ε> 0, on L2(Rd; Cn) given by the differential expression b(D)*g(x/ε)b(D). Here \(b(D) = \sum\nolimits_{j = 1}^d {b_j D_j }\) is a first-order matrix differential operator such that the symbol b(ξ) has maximal rank. The matrix-valued function g(x) is bounded, positive definite, and periodic with respect to some lattice. We study the operator exponential \({e^{ - i\tau {A_\varepsilon }}}\), where τ ∈ R. It is shown that, as ε → 0, the operator \({e^{ - i\tau {A_\varepsilon }}}\) converges to \({e^{ - i\tau {A^0}}}\) in the norm of operators acting from the Sobolev space Hs(Rd;Cn) (with suitable s) to L2(Rd;Cn). Here A0 is the effective operator with constant coefficients. Order-sharp error estimates are obtained. The question about the sharpness of the result with respect to the type of the operator norm is studied. Similar results are obtained for more general operators. The results are applied to study the behavior of the solution of the Cauchy problem for the Schrödinger-type equation i?τuε(x, τ) = Aεuε(x, τ).  相似文献   

20.
Agents endowed with power compete for a divisible resource by forming coalitions with other agents. The coalition with the greatest power wins the resource and divides it among its members. The agents’ power increases according to their share of the resource.We study two models of coalition formation where winning agents accumulate power and losing agents may participate in further coalition formation processes. An axiomatic approach is provided by focusing on variations of two main axioms: self-enforcement, which requires that no further deviation happens after a coalition has formed, and rationality, which requires that agents pick the coalition that gives them their highest payoff. For these alternative models, we determine the existence of stable coalitions that are self-enforcing and rational for two traditional sharing rules. The models presented in this paper illustrate how power accumulation, the sharing rule, and whether losing agents participate in future coalition formation processes, shape the way coalitions will be stable throughout time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号