首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1,3-Dipolar cycloaddition reactions of nitrones with α,β-unsaturated aldehydes catalyzed by a cationic chiral dirhodium(II,III) carboxamidate with (R)-menthyl (S)-2-oxopyrrolidine-5-carboxylate ligands in toluene increase reaction rates, give optimum regioselectivities, and enhance stereoselectivities compared to the same reactions performed in traditionally used halocarbon solvents. Rate and enantioselectivity enhancements were also obtained in hetero-Diels-Alder and carbonyl-ene reactions performed in toluene over those obtained in dichloromethane using the diastereomeric chiral cationic dirhodium(II,III) carboxamidate with (S)-menthyl (S)-2-oxopyrrolidine-5-carboxylate ligands. These enhancements are attributed to diminished or absent association of toluene with the catalyst which lessens the relative importance of the uncatalyzed background reaction, and they may also be a consequence of different coordination angles for aldehyde association with rhodium in the different solvent environments. Overall, the enhancement of reaction rates and selectivities with cationic chiral dirhodium(II,III) carboxamidates in toluene suggests broad applications for them in Lewis acid catalyzed reactions.  相似文献   

3.
4.
[reaction: see text] Two sequential intramolecular carbon-hydrogen insertion or cyclopropanation reactions of bis-diazoacetates using chiral dirhodium(II) carboxamidate catalysts are reported. The initial metal carbene transformation forms an excess of one enantiomer that with the second transformation further enhances stereocontrol (kinetic amplification). Diastereoselectivity and enantioselectivity for product formation are controlled by the catalyst.  相似文献   

5.
Davies HM  Walji AM 《Organic letters》2005,7(14):2941-2944
[reaction: see text] Chiral rhodium(II) catalysts used in asymmetric carbenoid chemistry can be efficiently heterogenized using a novel immobilization strategy. The immobilized catalysts display similar reactivity and stereoselectivity to their homogeneous counterparts and can be effectively recycled with limited loss in stereoselectivity.  相似文献   

6.
The first catalytic asymmetric hetero-Diels-Alder reaction between 2-aza-3-silyloxy-1,3-butadienes and aldehydes is described. With dirhodium(II) tetrakis[N-benzene-fused-phthaloyl-(S)-piperidinonate], Rh(2)(S-BPTPI)(4), the cycloaddition reaction proceeded exclusively in an endo mode to give all-cis-substituted 1,3-oxazinan-4-ones in high yields with up to 98% ee.  相似文献   

7.
The addition of 30% water (by volume) to acetone creates a remarkably effective polar phase solvent system for a dicationic dirhodium tetraphosphine hydroformylation catalyst. The initial turnover frequency (TOF) increases by 265% (to 73 min-1) for the hydroformylation of 1-hexene relative to the initial TOF in pure acetone (20 min-1). The aldehyde linear to branched (L:B) ratio increases to 33:1, and alkene isomerization and hydrogenation side reactions are essentially eliminated. Comparisons with monometallic rhodium catalysts based on PPh3, Bisbi, Naphos, and Xantphos ligands demonstrate that this polar-phase bimetallic catalyst is one of the fastest and most selective hydroformylation systems known under these mild conditions (90 degrees C, 6.2 bar H2/CO). The monometallic catalysts also show rate enhancements (although considerably smaller) in water-acetone, but Rh-Xantphos does show a large increase of 115%, with considerably reduced alkene isomerization side reactions. The dramatic effect of water on the dirhodium catalyst system is believed to be due to simple inhibition of the fragmentation of the catalytically active species into inactive mono- and bimetallic complexes.  相似文献   

8.
Diazo decomposition of steroidal diazoacetates, where the point of attachment is the 3-position of the steroid A-ring, catalyzed by chiral dirhodium(II) carboxamidates results in products from carbon-hydrogen insertion in high yield and selectivities. Use of S-configured catalysts shows a distinctive preference for insertion into the 3-position to form beta-lactone products. The R-configured catalysts direct insertion preferentially to the equatorial C-H bond at the 2-position. Substituents or functional groups at the 5/6-position prevent C-H insertion from taking place at the 4-position. Even in the best case with the 5/6-positions fully saturated, however, insertion into the 3-position remains competitive with insertion into the 4-position. Corresponding 3-substituted phenyldiazoacetates give only beta-lactone products, and selectivity here is highest with chiral dirhodium(II) prolinate catalysts. A model is presented to explain these results. Overall, this methodology is versatile for functionalization of the steroid A-ring at positions 2 and 3.  相似文献   

9.
A novel dirhodium tetracarboxylate complex is described in which two calix[4]arene macrocycles, bridged at the upper rim by a Rh-Rh unit, serve as ligands and whose solid-state structure shows an unusual coordination of a toluene molecule in the axial position at each rhodium atom.  相似文献   

10.
The influence of a chiral menthyl group as the pendant ester substituent on the N-acetyl-2-oxoimidazolidine-4S-carboxylate ligands in chiral dirhodium(II) imidazolidinone catalysts has been examined. Significant match/mismatch influences are evident in the observed stereocontrol for carbon–hydrogen insertion reactions with diazoacetates, but these effects are minimal in cyclopropanation reactions. Steric restrictions prevent effective enantiocontrol in hetero-Diels–Alder reactions using these menthyl-substituted catalysts.  相似文献   

11.
Dirhodium tetracarboxylates are readily immobilized on agitation in the presence of highly cross-linked polystyrene resins with a pyridine attachment. A systematic study demonstrates that the polymer backbone, the linker, the terminal pyridine group, and the catalyst structure all contribute to the efficiency of dirhodium catalyst immobilization. The immobilization is considered to be due to the combination of ligand coordination and encapsulation. The dirhodium tetraprolinate catalysts, Rh2(S-DOSP)4 (1a), Rh2(S-TBSP)4 (1b), and Rh2(S-biTISP)2 (2), are all efficiently immobilized. The resulting heterogeneous complexes are very effective catalysts for asymmetric cyclopropanation between methyl phenyldiazoacetate and styrene, and under optimized conditions they can be recycled five times with virtually no loss in enantioselectivity. The three-phase test studies indicated that a very slow reaction occurs when both the catalyst and the diazo compound were immobilized, but the slow rate precluded the likelihood that the cyclopropanation was predominately occurring by a release-and-capture mechanism.  相似文献   

12.
Dirhodium(II) catalysts have been widely used as a remarkable tool in organic synthesis, ultimately resulting in a myriad of transformations and formation of a wide variety of compounds, every so often intermediaries in drug synthesis. Aiming at a more sustainable chemistry, several methods suitable for the reutilisation of expensive dirhodium complexes have been developed. Herein, we provide a combined overview of the available methods for recovering and reusing dirhodium(II) metal complexes in catalysis, covering homogeneous catalysis as well as heterogenisation methods.  相似文献   

13.
Thirteen enantiopure paddlewheel-shaped dirhodium(II) tetrakiscarboxylate complexes have been checked for their efficiency in the dirhodium method (differentiation of enantiomers by NMR spectroscopy); six of them are new. Their diastereomeric dispersion effects were studied and compared via so-called key numbers KN. Adducts of each complex were tested with five different test ligands representing all relevant donor properties from strong (phosphane) to very weak (ether). Only one of them, the dirhodium complex with four axial (S)-N-2,3-naphthalenedicarboxyl-tert-leucinate groups (N23tL), showed results significantly better for all ligands than the conventional complex Rh* [Rh(II)(2)[(R)-(+)-MTPA](4); MTPA = methoxytrifluoromethylphenylacetate]. On the basis of (1)H{(1)H} NOE spectroscopy and X-ray diffraction, a combination of favourable anisotropic group orientation and conformational flexibility is held responsible for the high efficiency of N23tL in enantiodifferentiation. Both complexes, Rh* and N23tL, are recommended as chiral auxiliaries for the dirhodium experiment.  相似文献   

14.
A synthesis of multifunctional dirhodium metallopeptide ligands for MDM2 is presented. An orthogonal protection scheme of palladium-catalyzed de-allylation on a metallopeptide substrate allows specific dirhodium incorporation in a complex peptide. Sequence effects on MDM2 binding are discussed.  相似文献   

15.
The total synthesis of (S)-(+)-imperanene, a natural product found in Chinese medicine, has been completed in 12 steps from a commercially available cinnamic acid. The key step is highly enantioselective carbon-hydrogen insertion from a diazoacetate using a chiral dirhodium(II) carboxamidate catalyst. An elimination process essential to the construction has been optimized to avoid intramolecular Friedel-Crafts alkylation.  相似文献   

16.
An efficient new methodology for the arylation of aldehydes is disclosed which uses dirhodium(II) catalysts and N-heterocyclic carbene (NHC) ligands. Complexes of Rh 2(OAc) 4 with one and two NHCs attached on the axial positions were successfully isolated, fully characterized, and used as catalysts in the reaction. The saturated monocomplex ((NHC 5)Rh 2(OAc) 4) 31 was shown to be the most active catalyst and was particularly efficient in the arylation of alkyl aldehydes. DFT calculations support participation of complexes with one axial NHC in the reaction as the catalysts active species and indicate that hydrogen bonds involving dirhodium unit, reactants, and solvent (alcohol) play an important role on the reaction mechanism.  相似文献   

17.
[reaction: see text] C-H functionalization of benzyl silyl ethers by means of rhodium-catalyzed insertions of aryldiazoacetates can be achieved in a highly diastereoselective and enantioselective manner by judicious choice of chiral catalyst or auxiliary. The dirhodium tetraprolinates such as Rh2((S)-DOSP)4 have been widely successful as chiral catalysts in the C-H functionalization chemistry of aryldiazoacetates, but give poor enantioselectivity in the reactions of aryldiazoacetates with benzyl silyl ether derivatives. The use of (S)-lactate as a chiral auxiliary resulted in C-H functionalization with moderately high diastereoselectivity (79-88% de) and enantioselectivity (68-85% ee). The best results (91-95% de, 95-98% ee), however, were achieved using Hashimoto's Rh2((S)-PTTL)4 catalyst.  相似文献   

18.
[reaction: see text] The chiral fluorous complex tetrakis-dirhodium(II)-(S)-N-(n-perfluorooctylsulfonyl)prolinate has been prepared and used as a catalyst in homogeneous or fluorous biphasic fashion. The catalyst displays good chemo- and enantioselectivity in intermolecular cyclopropanation and C-H bond activation reactions. The catalyst can be simply and thoroughly separated from the reaction mixture and is recyclable.  相似文献   

19.
20.
The effects of calcination temperature on structural and textural characteristics of two Greek bauxites were examined by different physicochemical techniques. Although the above minerals exhibited lower activity than a commercial CoMo/Al2O3 catalyst, they were evaluated as possible hydrotreating catalysts.
. , CoMo/Al2O3, , .
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号