首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
介绍了用单脉冲BOXCARS技术测量含铝固体燃剂燃烧场的温度及氮气的浓度。分析了激光光束质量对CARS信号强度的影响,给出了在燃烧场中取得的单脉冲CARS光谱,并进行了理论拟合,得到了燃烧场的温度及组份浓度数据。在燃烧场中心高5mm处温度值约为2550K,氮气浓度平均为25.5%。测量了燃烧场中不同高度处CARS光谱,给出了燃烧场温度、氮气浓度随高度变化的曲线,对结果进行了分析。  相似文献   

2.
堆积床内甲烷/空气预混燃烧的理论分析   总被引:2,自引:1,他引:1  
在多孔介质内组织预混燃烧,燃气与多孔介质有强烈的换热作用,燃烧过程伴随着化学反应和热输运的强烈耦合。本文以惰性氧化铝球堆积床内的甲烷/空气预混燃烧为例,提出解析模型,对燃烧过程进行理论分析,给出温度分布的解析解,发现了超绝热火焰温度燃烧现象。  相似文献   

3.
堆积床内非驻定过滤燃烧的一维研究   总被引:3,自引:1,他引:2  
多孔介质内气体过滤燃烧不同于自由流中燃烧,燃气与多孔介质强烈换热.热波波速和燃烧波波速是燃烧过程的特征参数.以惰性堆积床内的甲烷/空气的低速过滤燃烧为例,提出一维解析模型,用摄动理论推导出燃烧波波速,用直接求解方法和格林函数方法给出充分发展后的和瞬态的燃烧温度分布,并进行计算验证.  相似文献   

4.
根据生物质颗粒内部燃烧过程和生物质粉自然向下阴燃过程的共性,采用阴燃实验的方法研究了生物质内部燃烧特性。考查了物料种类、含水率、孔隙尺寸对生物质内部燃烧温度,燃烧中干燥前沿、炭氧化前沿的移动速度,裂纹、气体成分等的影响。实验结果为生物质燃烧和阴燃过程模拟以及深入理论分析提供了依据。  相似文献   

5.
通过对小尺度薄油池火燃烧特性进行实验研究,分析油池不同燃烧阶段的特点,探讨沸腾燃烧对油池燃烧特性的影响。测量了直径分别为0.10 m、0.14 m、0.20 m和0.30 m正庚烷油池火的燃烧速率以及温度分布随时间变化。分析燃烧过程中燃油液面温度和池壁温度的变化规律,研究池壁沸腾传热对油池沸腾燃烧的影响。结果表明:油池沸腾燃烧阶段的燃烧速率明显大于稳定燃烧阶段;燃油液面温度在油池燃烧初期迅速上升至沸点,随后基本保持不变;池壁温度达到并超过燃料的沸点,从而在油池壁面上发生沸腾现象,是油池发生沸腾燃烧的条件。  相似文献   

6.
斜爆轰发动机流动机理分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究高Mach数超燃冲压发动机和斜爆轰发动机的内流场燃烧流动机理,首先用CJ爆轰理论对超燃冲压发动机的内流场特性进行了理论分析,给出了燃烧室流场的气动规律,理论分析结果与现有实验结果吻合得非常好.其次,根据理论分析结果,提出了高Mach数超燃冲压发动机和斜爆轰发动机的气动设计原则.最后,根据提出的气动设计原则,设计了高Mach数斜爆轰发动机,飞行Mach数为9,对斜激波诱导燃烧机理开展了二维数值模拟研究.数值模拟结果表明,在高Mach数下,斜爆轰发动机燃烧室内可以得到稳定的燃烧流场.   相似文献   

7.
对燃烧蜡烛在水中悬浮的机理进行了理论与实验探究.通过建立近似垂直井结构模型,从辐射能流的角度对蜡烛的整个燃烧过程进行了理论分析.并且从实验上探究了蜡烛长度、蜡烛半径、以及配重对于蜡烛悬浮过程的影响.最后还对其振动模式进行了分析.  相似文献   

8.
本文采用并行计算对HCCI燃烧过程进行三维数值模拟与解析,对比了采用不同数量CPU与不同规模机理时的计算效率,分析了采用不同机理以及单区和三维HCCI模拟的计算结果的影响.结果表明,合理采用并行计算和简化机理可以大幅度提高HCCI模拟计算效率.三维HCCI模拟相比于单区模拟显著提高了燃烧和排放的计算精度; HCCI燃烧过程中缸内存在明显的温度分层,燃烧呈现顺序放热.  相似文献   

9.
燃气轮机燃烧室空气加湿燃烧的实验研究   总被引:1,自引:0,他引:1  
空气加湿燃烧是HAT循环的关键技术。本文通过中压全尺寸燃气轮机燃烧室空气加湿燃烧实验,研究了加湿度对燃烧特性的影响。实验中发现,燃烧室内温度分布、出口温度场、污染物生成(即NOx、CO、UHC)及燃烧稳定性都受到加湿度的影响。研究结果表明,空气加湿燃烧导致NOx排放显著下降, CO和UHC排放略有上升,燃烧室中压力振荡的频谱产生了变化,燃烧室出口温度场畸变加剧。作者从水蒸气影响燃烧的机理出发对实验结果进行了分析和解释。  相似文献   

10.
采用自适应化学理论AdapChem的方法对两种CH4/空气部分预混、非预混火焰的燃烧过程开展了数值模拟工作.计算得到了两种燃烧工况下,几种重要的主量成分、非主量成分的浓度值;同时对反应放热和HCO之间的潜在关系进行了分析.通过对两种工况下模拟结果的比较,AdapChem方法合理预报了甲烷预混和非预混燃烧过程的各种物理化学特性,并达到了节约计算时间的目的.  相似文献   

11.
Transported probability density function (TPDF) simulation with sensitivity analysis has been conducted for turbulent non-premixed CH4/H2 flames of the jet-into-hot-coflow (JHC) burner, which is a typical model to emulate moderate or intense low oxygen dilution combustion (MILD). Specifically, two cases with different levels of oxygen in the coflow stream, namely HM1 and HM3, are simulated to reveal the differences between MILD and hot-temperature combustion. The TPDF simulation well predicts the temperature and species distributions including those of OH, CO and NO for both cases with a 25-species mechanism. The reduced reaction activity in HM1 as reflected in the peak OH concentration is well correlated to the reduced oxygen in the coflow stream. The particle-level local sensitivities with respect to mixing and chemical reaction further show dramatic differences in the flame characteristics. HM1 is less sensitive to mixing and reaction parameters than HM3 due to the suppressed combustion process. Specifically, for HM1 the sensitivities to mixing and chemical reactions have comparable magnitude, indicating that the combustion progress is controlled by both mixing and reaction in MILD combustion. For HM3, there is however a change in the combustion mode: during the flame initialization, the combustion progress is more sensitive to chemical reactions, indicating that finite-rate chemistry is the controlling process during the autoignition process for flame stabilization; at further downstream where the flame has established, the combustion progress is controlled by mixing, which is characteristic of nonpremixed flames. An examination of the particles with the largest sensitivities reveals the difference in the controlling mixtures for flame stabilization, namely, the stoichiometric mixtures are important for HM1, whereas, fuel-lean mixtures are controlling for HM3. The study demonstrates the potential of TPDF simulations with sensitivity analysis to investigate the effects of finite-rate chemistry on the flame characteristics and emissions, and reveal the controlling physio-chemical processes in MILD combustion.  相似文献   

12.
火焰特征发射谱线研究   总被引:8,自引:3,他引:5  
本文利用CCD光纤光谱仪,通过实验确定了木基燃料燃烧火焰光谱中出现的特征谱线是K,Na 的原子发射谱线,测定了特征谱线出现时的火焰温度,指出可以通过特征谱线的出现与否来确定火焰的温度范围。还发现火焰的光谱形状和火焰的燃烧状态密切相关,包含大量和燃烧有关的信息,并且对煤烟颗粒有较强的抗干扰性。通过对火焰光谱形状的分析可判断出火焰的燃烧状况,进行燃烧诊断。  相似文献   

13.
This paper investigates the low-velocity filtration combustion of lean methane–air mixtures occurring in inert packed beds by using a modified one-temperature model, considering the axial thermal diffusion owing to the convective gas–solid heat transfer. Based on the scaling analysis of various transport terms in different conservation equations, a high-activation energy asymptotic method is applied in the flame zone and results in a set of powerful analytical solutions for combustion macrocharacteristics under the fully developed conditions. These are then combined with the eigenvalue method of the modified one-temperature model in the whole flow region to study the flame behaviour analytically and numerically. Our results have shown that the combustion wave velocity is a key characteristic parameter in the filtration combustion process. Compared with other existing theoretical results, the present analytical solutions demonstrate the intricate relationships among the combustion wave velocity, the flame speed, the peak flame temperature and the effects of the variable thermo-physical properties, and show better prediction performance for the combustion wave velocity, the flame speed and the peak flame temperature. Excellent agreements with experimental results have been observed, especially for very lean filtration combustion with stream-wise propagating combustion fronts.  相似文献   

14.
The combustion of bimodal nano/micron-sized aluminum particles with air is studied both analytically and experimentally in a well-characterized laminar particle-laden flow. Experimentally, an apparatus capable of producing Bunsen-type premixed flames was constructed to investigate the flame characteristics of bimodal-particle/air mixtures. The flame speed is positively affected by increasing the mass fraction of nano particles in the fuel formulation despite the lower flame luminosity and thicker flame zone. Theoretically, the flames are assumed to consist of several different regimes for fuel-lean mixture, including the preheat, flame, and post flame zones. The flame speed and temperature distribution are derived by solving the energy equation in each regime and matching the temperature and heat flux at the interfacial boundaries. The analysis allows for the investigation of the effects of particle composition and equivalence ratio on the burning characteristics of aluminum-particle/air mixtures. Reasonable agreement between theoretical results and experimental data was obtained in terms of flame speed. The flame structure of a bimodal particle dust cloud may display either an overlapping or a separated configuration, depending on the combustion properties of aluminum particles at different scales. At low percentages of nano particles in the fuel formulation, the flame exhibits a separated spatial structure with a wider flame regime. At higher nano-particle loadings, overlapping flame configurations are observed.  相似文献   

15.
The present study aims to clarify the effects of turbulence intensity and coal concentration on the spherical turbulent flame propagation of a pulverized coal particle cloud. A unique experimental apparatus was developed in which coal particles can be dispersed homogeneously in a turbulent flow field generated by two fans. Experiments on spherical turbulent flame propagation of pulverized coal particle clouds in a constant volume spherical chamber in various turbulence intensities and coal concentrations were conducted. A common bituminous coal was used in the present study. The flame propagation velocity was obtained from an analysis of flame propagation images taken using a high-speed camera. It was found that the flame propagation velocity increased with increasing flame radius. The flame propagation velocity increases as the turbulence intensity increases. Similar trends were observed in spherical flames using gaseous fuel. The coal concentration has a weak effect on the flame propagation velocity, which is unique to pulverized coal combustions in a turbulent field. These are the first reports of experimental results for the spherical turbulent flame propagation behavior of pulverized coal particle clouds. The results obtained in the present study are obviously different from those of previous pulverized coal combustion studies and any other results of gaseous fuel combustion research.  相似文献   

16.
湿空气扩散燃烧火焰结构特性研究   总被引:4,自引:0,他引:4  
利用二维粒子成像速度仪(PIV)对钝体燃烧器中的甲烷/湿空气扩散燃烧的速度场进行测量,考察其火焰的结构特性及其内部流动状况。通过对湿空气燃烧流场与普通燃烧流场的对比分析表明,湿空气燃烧情况下,两种燃烧状态的火焰(回流燃烧火焰和中心射流主导火焰)相互转换的燃空速度比(γ)值要比普通燃烧的小;湿空气燃烧使得喷嘴后的同流空气的速度降低,空气的回流作用减弱,燃料更容易冲出回流区,火焰的稳定性能变差。  相似文献   

17.
利用火焰发射光谱来研究汽油机的燃烧过程   总被引:2,自引:0,他引:2  
本文用一套精密的光电转换系统,采集了一台汽油机燃烧过程中火焰辐射在可见光到近紫外波段内的光谱,探测到了燃烧中间产物CH、CN、C2、H2O等的特征光谱,并分析了这些产物在燃烧过程中的变化规律,以及随过量空气系数,缸内压力的变化.实验结果表明,汽油机三个不同的燃烧阶段具有不同的燃烧光谱特征:着火过程中,存在着大量的处于激发态的分子、原子、离子、自由基等活化中心的束缚态光谱,随着燃烧发展,CH、C2自由基的光谱强度明显加强;当减小过量空气系数时,光谱强度变弱并且着火延迟期增长;自由基特征光谱的光强变化曲线可以反映它们在燃烧过程中的浓度变化.所以火焰发射光谱是实时检测燃烧中间产物,特别是CH、C2等有害排放物变化规律的有效手段,可以为分析、模拟燃烧过程,控制排放提供有用的实验数据.  相似文献   

18.
Pilot-ignited dual fuel combustion involves a complex transition between the pilot fuel autoignition and the premixed-like phase of combustion, which is challenging for experimental measurement and numerical modelling, and not sufficiently explored. To further understand the fundamentals of the dual fuel ignition processes, the transient ignition and subsequent flame development in a turbulent dimethyl ether (DME)/methane-air mixing layer under diesel engine-relevant conditions are studied by direct numerical simulations (DNS). Results indicate that combustion is initiated by a two-stage autoignition that involves both low-temperature and high-temperature chemistry. The first stage autoignition is initiated at the stoichiometric mixture, and then the ignition front propagates against the mixture fraction gradient into rich mixtures and eventually forms a diffusively-supported cool flame. The second stage ignition kernels are spatially distributed around the most reactive mixture fraction with a low scalar dissipation rate. Multiple triple flames are established and propagate along the stoichiometric mixture, which is proven to play an essential role in the flame developing process. The edge flames gradually get close to each other with their branches eventually connected. It is the leading lean premixed branch that initiates the steady propagating methane-air flame. The time required for the initiation of steady flame is substantially shorter than the autoignition delay time of the methane-air mixture under the same thermochemical condition. Temporal evolution of the displacement speed at the flame front is also investigated to clarify the propagation characteristics of the combustion waves. Cool flame and propagation of triple flames are also identified in this study, which are novel features of the pilot-ignited dual fuel combustion.  相似文献   

19.
A Large Eddy Simulation (LES) model capable of accurately representing finite-rate chemistry effects in turbulent premixed combustion is presented. The LES computations use finite-rate chemistry and implicit LES combustion modelling to simulate an experimentally well-documented lean-premixed jet flame stabilized by a stoichiometric pilot. The validity of the implicit LES assumption is discussed and criteria are expressed in terms of subgrid scale Damköhler and Karlovitz numbers. Simulation results are compared to experimental data for velocity, temperature and species mass fractions of CH4, CO and OH. The simulation results highlight the validity and capability of the present approach for the flame and in general the combustion regime examined. A sensitivity analysis to the choice of the finite-rate chemistry mechanism is reported, this analysis indicates that the one and two-step global reaction mechanisms evaluated fail to capture the reaction layer with sufficient accuracy, while a 20-species skeletal mechanism reproduces the experimental observations accurately including the key finite-rate chemistry indicators CO and OH. The LES results are shown to be grid insensitive and that the grid resolution within the bounds examined is far less important compared to the sensitivity of the finite-rate chemistry representation. The results are analyzed in terms of the flame dynamics and it is shown that intense small scale mixing (high Karlovitz number) between the pilot and the jet is an important mechanism for the stabilization of the flame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号