首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Einstein equation for the Friedmann-Robertson-Walker metric plays a fundamental role in cosmology. The direct search of the exact solutions of the Einstein equation even in this simple metric case is sometime a hard job. Therefore, it is useful to construct solutions of the Einstein equation using a known solutions of some other equations which are equivalent or related to the Einstein equation. In this work, we establish the relationship the Einstein equation with two other famous equations namely the Ramanujan equation and the Chazy equation. Both these two equations play an important role in the number theory. Using the known solutions of the Ramanujan and Chazy equations, we find the corresponding solutions of the Einstein equation.  相似文献   

2.
The field equations for two non-local variables, equivalent to the Einstein vacuum equations, are presented. These variables are the holonomy operator associated with special paths and the light cone cut function.

Starting from these equations, one shows via a perturbation argument that a single, fourth-order equation for the cut function can be derived. This single equation encodes the entire conformal structure of a vacuum space—time. The same perturbation technique yields, via quadratures, solutions to the vacuum Einstein equations to any order.  相似文献   


3.
We find new classes of exact solutions to the Einstein–Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein–Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.  相似文献   

4.
圆杆波导中的一个非线性波动方程及准确周期解   总被引:3,自引:0,他引:3       下载免费PDF全文
刘志芳  张善元 《物理学报》2006,55(2):628-633
在小变形条件下,采用Cox的非线性应力应变关系,计及横向Possion效应,借助Hamilton变分原理导出了非线性弹性圆杆波导中的纵向波动方程. 利用Jacobi椭圆余弦函数展开法,对该方程与截断的非线性波动方程进行求解,得到了两类非线性波动方程的准确周期解,它们可以进一步退化为孤波解. 关键词: 非线性波 Possion效应 Jacobi椭圆余弦函数  相似文献   

5.
If one assumes a particular form of non-minimal coupling, called the conformal coupling, of a perfect fluid with gravity in the fluid–gravity Lagrangian then one gets modified Einstein field equation. In the modified Einstein equation the effect of the non-minimal coupling does not vanish if one works with spacetimes for which the Ricci scalar vanishes. In the present work we use the Schwarzschild metric in the modified Einstein equation, in the presence of non-minimal coupling with a fluid, and find out the energy–density and pressure of the fluid. In the present case the perfect fluid is part of the solution of the modified Einstein equation. We also solve the modified Einstein equation, using the flat spacetime metric and show that in the presence of non-minimal coupling one can accommodate a perfect fluid of uniform energy–density and pressure in the flat spacetime. In both the cases the fluid pressure turns out to be negative. Except these non-trivial solutions it must be noted that the vacuum solutions also remain as trivial valid solutions of the modified Einstein equation in the presence of non-minimal coupling.  相似文献   

6.
We study the Einstein system of equations in static spherically symmetric spacetimes. We obtained classes of exact solutions to the Einstein system by transforming the condition for pressure isotropy to a hypergeometric equation choosing a rational form for one of the gravitational potentials. The solutions are given in simple form that is a desirable requisite to study the behavior of relativistic compact objects in detail. A physical analysis indicate that our models satisfy all the fundamental requirements of realistic star and match smoothly with the exterior Schwarzschild metric. The derived masses and densities are consistent with the previously reported experimental and theoretical studies describing strange stars. The models satisfy the standard energy conditions required by normal matter.  相似文献   

7.
We consider a radiating shear-free spherically symmetric metric in higher dimensions. Several new solutions to the Einstein’s equations are found systematically using the method of Lie analysis of differential equations. Using the five Lie point symmetries of the fundamental field equation, we obtain either an implicit solution or we can reduce the governing equations to a Riccati equation. We show that known solutions of the Einstein equations can produce infinite families of new solutions. Earlier results in four dimensions are shown to be special cases of our generalised results.  相似文献   

8.
In the standard approach for simulating fluid–structure interaction problems the solution of the set of equations for solids provides the three displacement components while the solution of equations for fluids provides the three velocity components and pressure. In the present paper a novel reformulation of the elastodynamic equations for Hookean solids is proposed so that they contain the same unknowns as the Navier–Stokes equations, namely velocities and pressure. A separate equation for pressure correction is derived from the constitutive equation of the solid material. The system of equations for both media is discretised using the same method (finite volume on collocated grids) and the same iterative technique (SIMPLE algorithm) is employed for the pressure–velocity coupling. With this approach, the continuity of the velocity field at the interface is automatically satisfied. A special pressure correction procedure that enforces the compatibility of stresses at the interface is also developed. The new method is employed for the prediction of pressure wave propagation in an elastic tube. Computations were carried out with different meshes and time steps and compared with available analytic solutions as well as with numerical results obtained using the Flügge equations that describe the deformation of thin shells. For all cases examined the method showed very good performance.  相似文献   

9.
引入压力变量,将弹性力学控制方程表达为位移和压力的耦合偏微分方程组,采用重心插值近似未知量,利用重心插值微分矩阵得到平面问题控制方程的矩阵形式离散表达式.采用重心插值离散位移和应力边界条件,采用附加法施加边界条件,得到求解平面弹性问题的过约束线性代数方程组,采用最小二乘法求解过约束方程组,得到平面问题位移数值解.数值算例验证了所提方法的有效性和计算精度.  相似文献   

10.
The field equations for static EGBM gravity are obtained and transformed to an equivalent form through a coordinate redefinition. A form for one of the metric potentials that generalizes the spheroidal ansatz of Vaidya–Tikekar superdense stars and additionally prescribing the electric field intensity yields viable solutions. Some special cases of the general solution are considered and analogous classes in the Einstein framework are studied. In particular the Finch–Skea ansatz is examined in detail and found to satisfy the elementary physical requirements. These include positivity of pressure and density, the existence of a pressure free hypersurface marking the boundary, continuity with the exterior metric, a subluminal sound speed as well as the energy conditions. Moreover, the solution possesses no coordinate singularities. It is found that the impact of the Gauss–Bonnet term is to correct undesirable features in the pressure profile and sound speed index when compared to the equivalent Einstein gravity model. Furthermore graphical analyses suggest that higher densities are achievable for the same radial values when compared to the 5-dimensional Einstein case. The case of a constant gravitational potential, isothermal distribution as well as an incompressible fluid are studied. All exact solutions derived exhibit an equation of state explicitly.  相似文献   

11.
For space-times with two spacelike isometries, we present infinite hierarchies of exact solutions of the Einstein and Einstein-Maxwell equations as represented by their Ernst potentials. This hierarchy contains three arbitrary rational functions of an auxiliary complex parameter. They are constructed using the so-called "monodromy transform" approach and our new method for the solution of the linear singular integral equation form of the reduced Einstein equations. The solutions presented, which describe inhomogeneous cosmological models or gravitational and electromagnetic waves and their interactions, include a number of important known solutions as particular cases.  相似文献   

12.
We derive an equation for the acceleration of a fluid element in the spherical gravitational collapse of a bounded compact object made up of an imperfect fluid. We show that non-singular as well as singular solutions arise in the collapse of a fluid initially at rest and having only a tangential pressure. We obtain an exact solution of the Einstein equations, in the form of an infinite series, for collapse under tangential pressure with a linear equation of state. We show that if a singularity forms in the tangential pressure model, the conditions for the singularity to be naked are exactly the same as in the model of dust collapse.  相似文献   

13.
We present a new class of exact interior solutions for anisotropic spheres to the Einstein field equations with a prescribed energy density. This category of solutions has similar energy density profiles to the models of Chaisi and Maharaj (Gen. Rel. Grav. 37, 1177–1189, 2005) whose approach we follow in the integration process. A distinguishing feature of the solutions presented is that they satisfy a barotropic equation of state linearly relating the radial pressure to the energy density.  相似文献   

14.
The problem of singularities is examined from the stand-point of a local observer. A singularity is defined as a state with an infinite proper rest mass density. The approach consists of three steps: (i) The complete system of equations describing a non-symmetric motion of a perfect fluid under assumption of adiabatic thermodynamic processes and of no release of nuclear energy is reduced to six Einstein field equations and their four first integrals for six remaining unknown componentsgik. (ii) A differential relation for the behavior of the rest mass density is deduced. It shows that any inhomogeneity and anisotropy in the distribution and motion of a non-rotating ideal fluid accelerates collapse to a singularity which will be reached in a finite proper time. Collapse is also inevitable in a rotating fluid in the case of extremely high pressure when the relativistic limit of the equation of state must be applied. In the case of a lower or zero pressure the relation does not give an unambiguous answer if the matter is rotating. (iii) The influence of rotation on the motion of an incoherent matter is investigated. Some qualitative arguments are given for a possible existence of a narrow class of singularity-free solutions of Einstein equations. Assuming rotational symmetry the Einstein partial differential equations together with their first integrals are reduced to a system of simultaneous ordinary differential equations suitable for numerical integration. Without integrating this system the existence of the class of singularity-free solutions is confirmed and exactly delimited. These solutions, representing a new general relativistic effect, are, however, of no importance for the application in cosmology or astrophysics. It is proved that in all the other cases interesting from the point of view of application the occurrence of a point singularity in incoherent matter with a rotational symmetry is inevitable even if the rotation is present.Read on 15 May 1970 at the Gwatt Seminar on the Bearings of Topology upon General Relativity  相似文献   

15.
We introduce a new method for establishing the future non-linear stability of perturbations of FLRW solutions to the Einstein–Euler equations with a positive cosmological constant and a linear equation of state of the form p = . The method is based on a conformal transformation of the Einstein–Euler equations that compactifies the time domain and can handle the equation of state parameter values 0 < K ≤ 1/3 in a uniform manner. It also determines the asymptotic behavior of the perturbed solutions in the far future.  相似文献   

16.
S HANSRAJ  S D MAHARAJ  T MTHETHWA 《Pramana》2013,81(4):557-567
The Einstein–Maxwell equations describing static charged spheres with uniform density and variable electric field intensity are studied. The special case of constant electric field is also studied. The evolution of the model is governed by a hypergeometric differential equation which has a general solution in terms of special functions. Several classes of exact solutions are identified which may be considered as charged generalizations of the incompressible Schwarzschild interior model. An analysis of the physical features is undertaken for the uniform case. It is demonstrated that uniform density spheres with constant electric field intensity are not realizable with isotropic pressures. This highlights the necessity of studying the criteria for physical admissability of gravitating spheres in general relativity which are solutions to the Einstein–Maxwell equations.  相似文献   

17.
A class of solutions is obtained for the Einstein equations for liquid spheres with finite values of the energy density and pressure at the center. The fourth Tolman solution and the Adler solution belong to this class. A new solution is presented for which a merger is made with external empty space. Configuration parameters are calculated for an ultrarelativistic equation of state at the center.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 87–89, May, 1981.  相似文献   

18.
The Einstein–Maxwell equations with anisotropic pressures and electromagnetic field are studied with a polytropic equation of state. New exact solutions to the field equations are generated in terms of elementary functions. Special cases of the uncharged solutions of Feroze and Siddiqui (Gen Relativ Gravit 43:1025, 2011) and Maharaj and Mafa Takisa (Gen Relativ Gravit 44:1419, 2012) are recovered. We also obtain exact solutions for a neutral anisotropic gravitating body for a polytrope from our general treatment. Graphical plots indicate that the energy density, tangential pressure and anisotropy profiles are consistent with earlier treatments which suggest relevance in describing relativistic compact stars.  相似文献   

19.
We develop a general method for constructing curved traversable wormholes in (2+1)-dimensional spacetime, by generating surfaces of revolution around smooth curves. Application of this method to a straight line gives the usual spherically symmetric wormholes. The physics behind (2+1)-d curved traversable wormholes is discussed based on solutions to the Einstein field equations when the tidal force is zero. The Einstein field equations are found to reduce to one equation whereby the mass-energy density varies linearly with the Ricci scalar, which signifies that our (2+1)-d curved traversable wormholes are supported by dust of ordinary and exotic matter without radial tension nor lateral pressure. With this, two examples of (2+1)-d curved traversable wormholes: the helical wormhole and the catenary wormhole, are constructed and we show that there exist geodesics through them supported by non-exotic matter. This general method is applicable to our (3+1)-d spacetime.  相似文献   

20.
The conformal thin-sandwich (CTS) equations are a set of four of the Einstein equations, which generalize the Laplace-Poisson equation of Newton's theory. We examine numerically solutions of the CTS equations describing perturbed Minkowski space, and find only one solution. However, we find two distinct solutions, one even containing a black hole, when the lapse is determined by a fifth elliptic equation through specification of the mean curvature. While the relationship of the two systems and their solutions is a fundamental property of general relativity, this fairly simple example of an elliptic system with nonunique solutions is also of broader interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号