首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solubility of paracetamol in water-ethanol-propylene glycol binary and ternary mixtures at 25 and 30 degrees C was determined using flask shake method. The generated data extended the solubility database for further computational investigations and also was used to assess the prediction capability of the Jouyban-Acree model. A new version of the model was proposed for modeling the solubility data in water-cosolvent mixtures with the cosolvent concentration of <50% which is required in pharmaceutical formulations. The accuracy of the predicted solubilities was evaluated by the mean percentage deviation (MPD) between the predicted and experimental solubilities. The overall MPD of the Jouyban-Acree model and the log-linear model of Yalkowsky for the entire composition range of the cosolvents were 11.0+/-8.7 and 55.4+/-17.8%, respectively; the corresponding values for the predicted solubilities in mixtures having a cosolvent concentration of <50% were 12.0+/-9.1 and 22.0+/-11.0%.  相似文献   

2.
Quantitative structure property relationships were proposed to calculate the binary interaction terms of the Jouyban-Acree model using coefficients of Abraham solvational models. The applicability of the proposed methods for reproducing solubility data of anthracene in binary solvents has been evaluated using 56 solubility data sets collected from the literature. The mean percentage deviation (MPD) of experimental and calculated solubilities, using predicted mole fraction solubility of anthracene in solvents 1 and 2, has been computed as a measure of accuracy and the MPD of the proposed methods were 5.5 and 4.2%. The accuracy of the method was compared with that of a previously reported method where the MPD was 14.4% and the mean differences between proposed and previous methods was statistically significant. To provide a predictive model, solubility of anthracene was computed using Abraham solvational models and employed to predict the solubility in binary solvents using derived model constants of Jouyban-Acree model and the obtained MPDs were 37.9 and 22.2%, respectively.  相似文献   

3.
Experimental solubility of deferiprone (DFP) in N-methyl-2-pyrrolidone (NMP) + ethanol (EtOH) mixtures at 293.2, 298.2, 303.2 and 308.2 K was determined and mathematically represented using various models. The trained versions of the van’t Hoff equation, its combined version with log-linear model, Jouyban–Acree model and a combination of van’t Hoff + Jouyban–Acree model were reported to simulate DFP solubility in the binary mixture compositions at various temperatures. The mean percentage deviation (MPD) was used as an accuracy criterion. The obtained overall MPDs for back-calculated and predicted solubility of DFP in NMP + EtOH mixtures varied from 1.1% to 3.2% and 2.6% to 6.6%, respectively. Some of apparent thermodynamic quantities for the dissolution processes of DFP are also reported.  相似文献   

4.
The Jouyban-Acree model has been used to predict the solubility of paracetamol in water-ethanol-propylene glycol binary and ternary mixtures based on model constants computed using a minimum number of solubility data of the solute in water-ethanol, water-propylene glycol and ethanol-propylene glycol binary mixtures. Three data points from each binary solvent system and solubilities in neat solvents were used to calculate the binary interaction parameters of the model. Then the solubility at other binary solvent compositions as well as in a number of ternary solvents were predicted, and the mean percentage deviation (+/-S.D.) of predicted values from experimental solubilities was 7.4(+/-6.1)%.  相似文献   

5.
Numerical methods to predict the solubility of anthracene in mixed solvents have been proposed. A minimum number of 3 solubility data points in sub-binary solvents has been employed to calculate the solvent-solute interaction terms of a well established colsolvency model, i.e. the combined nearly ideal binary solvent/Redlich-Kister model. The calculated interaction terms were used to predict the solubility in binary and ternary solvent systems. The predicted solubilities have been compared with experimental solubility data and the absolute percentage mean deviation (APMD) has been computed as a criterion of prediction capability. The overall APMD for 25 anthracene data sets in binary solvents is 0.40%. In order to provide a predictive method, which is based fully on theoretical calculations, the quantitative relationships between sub-binary interaction terms and physicochemical properties of the solvents have been presented. The overall APMD value for 41 binary data sets is 9.19%. The estimated binary interaction terms using a minimum number of data points and the quantitative relationships have then been used to predict anthracene solubility data in 30 ternary solvent systems. The produced APMD values are 3.72 and 15.79%, respectively. To provide an accurate correlation for solubility in ternary solvent systems, an extension to the combined nearly ideal multicomponenet solvent/Redlich-Kister (CNIMS/R-K) model was proposed and the corresponding overall AMPD is 0.38%.  相似文献   

6.
A numerical method is proposed for predicting solubility of drugs in water-PEG 400 mixtures based on the Jouyban-Acree cosolvency model. The accuracy of the proposed method is evaluated by computing mean percentage deviation (MPD) and compared with that of log-linear model of Yalkowsky. The overall MPDs of the Jouyban-Acree model and the most accurate version of Yalkowsky's model are 39.8 (+/-46.7) % and 175.8 (+/-266.4) %, respectively, and the mean difference is statistically significant (p < 0.0005). The proposed method produces acceptable residual distribution and the probability of solubility prediction with residual log of solubility <0.5 unit is 0.86. The applicability of the proposed method could be extended for predicting the solubility of drugs in water-PEG 400 mixtures at various temperatures. The impact of various log P values computed using different software is also studied and the results of ANOVA revealed that there are no significant differences between the accuracy of the predicted solubilities employing various log P values.  相似文献   

7.
Ten different mathematical models representing the electrophoretic mobility of analytes in capillary electrophoresis in mixed solvents of different composition have been compared using 32 experimental data sets. The solvents are binary mixtures of water-methanol, water-ethanol and methanol-ethanol, respectively. Mean percentage deviation (MPD), overall MPD (OMPD) and individual percentage deviation (IPD) have been considered as comparison criteria. The results showed that a reorganized solution model, namely the combined nearly ideal binary solvent/Redlich-Kister equation, is the most accurate model among other similar models concerning both correlation ability and prediction capability.  相似文献   

8.
Herein we report density measurements for the binary system 2-methyl-2,4-pentanediol(MPD,1)-water(0), and for the ternary system MPD(1)-NaCl(2)-water(0), at several fixed MPD/water ratios and at varying NaCl concentrations. The partial molar volume of MPD in the binary system has been discussed according to the McMillan-Meyer theory. At low MPD concentrations, the non-bonding MPD-MPD interactions are related to the overlapping of the hydrophobic parts of the hydration cospheres, whereas at higher concentrations the hydrophilic moieties are also involved in the solute-solute interactions. The ternary density data allowed us to determine the salt partial molar volume at infinite dilution. The trend of this quantity as a function of the MPD content in the MPD-water “mixed solvent” has been interpreted on the basis of the water partial molar volume in the binary MPD-water system.  相似文献   

9.
The solubilities of naproxen in the binary and ternary mixtures of polyethylene glycols 200, 400 or 600 with ethanol and water (185 data points) at 298.2 K are determined and mathematically represented by cosolvency models. The obtained overall mean relative deviations (OMRDs) for fitting the solubility data of naproxen in binary and ternary mixtures using Williams–Amidon and Jouyban–Acree model are 15.7% and 16.5%, respectively, and the OMRD values for predicting the solubility data of naproxen by the trained versions of Williams–Amison and Jouyban–Acree models are 71.1% and 64.4%, respectively.  相似文献   

10.
The solubility of acetaminophen and ibuprofen in binary and ternary mixtures of N-methyl pyrrolidone, polyethylene glycol 600 and water at 25 °C were determined and the solubilities are mathematically represented by the Jouyban–Acree model. The density of the solute-free solvent mixtures was measured and employed to train the Jouyban–Acree model and then the densities of the saturated solutions were predicted. The overall mean relative deviations (OMRDs) for fitting the solubility data of acetaminophen and ibuprofen in binary mixtures are 3.2% and 6.0%, respectively. The OMRDs for fitting the solubilities in ternary solvent mixtures for acetaminophen and ibuprofen are 15.0% and 28.6%, respectively, and the OMRD values for predicting all solubilities of acetaminophen and ibuprofen by a trained version of the Jouyban–Acree model are 9.4% and 17.8%, respectively. The prediction OMRD for the density of saturated solutions is 1.9%.  相似文献   

11.
Experimental solubilities of diazepam in binary and ternary solvents of polyethylene glycols 200 and 400 with N-methyl pyrrolidone and water at T = 298.2 K are reported. The Jouyban–Acree model was used to fit solubility data of diazepam in the binary and ternary solvent mixtures (106 data points) in which the overall mean relative deviations (OMRD %) is 13.1 % and the prediction OMRD % is 31.7 %. The combined version of the Jouyban–Acree model with Hansen solubility parameters was used for fitting and predicting the solubility data and the OMRDs % are 10.0 and 20.8 %, respectively. Also, the previously proposed trained versions of the Jouyban–Acree model were used for predicting the reported data in this work and all results are listed in the tables. The density of the solute-free solvent mixtures were measured and employed to calculate the constants of the Jouyban–Acree model and then the densities of the saturated solutions were predicted.  相似文献   

12.
A thermodynamic model for the solubility of nitrogen in pure water (273–623 K, 0–600 bar) and in aqueous NaCl solutions (0–4m, 273-473 K, 0–600 bar) is presented. The model is based on a specific interaction model for the liquid phase and a highly accurate equation of state for the vapor phase. Comparison of the model predictions with experimental data indicates that the model predictions are within or close to experimental uncertainty. Most experimental data sets are consistent within errors of about 7%. Although the parameters were evaluated from data for binary and ternary systems, the model can be used to predict nitrogen solubility in much more complicated systems like seawater.  相似文献   

13.
The capability of the extended forms, of two well established cosolvency models, i.e. the combined nearly ideal binary solvent/Redlich-Kister equation and the modified Wilson model, used to predict the solute solubility in non-aqueous ternary solvent mixtures is presented. These predictions are based on the measured solubilities of anthracene in binary solvent mixtures. As a result the values of average percent deviations were less than 2% for the anthracene solubility in ternary mixtures. This work was also extended to other cosolvency models, ie. the extended Hildebrand solubility approach and the mixture response surface method, which are also commonly used for correlating solubility data in ternary solvents. The accuracy of the models is compared with each other and also with a published solubility model for ternary mixtures. The results illustrate that all models produced comparable accuracy.  相似文献   

14.
The solubility of N,N′-Bis(2,2,6,6-tetramethyl-4-piperidinyl)-1,6-hexanediamine in seven pure solvents (acetonitrile, acetone, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate and isobutyl acetate) and two binary solvent mixtures (acetone?+?acetonitrile and methyl acetate?+?acetonitrile) were measured from 273.15 to 303.15 K at atmospheric pressure by a dynamic method. The solubility data in these pure solvents were correlated by the modified Apelblat model, the Wilson model and the NRTL model, and that in the binary solvents mixture were fitted to the CNIBS/R–K model and the NRTL model. Furthermore, the mixing thermodynamic properties in pure and binary solvent systems were calculated and are discussed, based on the NRTL model. Finally, the applicability of the model of Zhang et al. (Ind Eng Chem Res 51:6933–6938, 2012) in correlating solubility data versus dielectric constant was extended from organic solvent–water mixtures to pure organic solvents and nonaqueous organic solvent mixtures. It was found that the dissolution behavior of a compound in the binary solvent mixtures can be predicted to some extent from those in pure solvents.  相似文献   

15.
Mutual solubility data of imidazolium-based ionic liquid, 1-butyl-2,3-dimethylimidazolium tetrafluoroborate ([bmmim][BF4]) with the alcohols, 1-propanol, 2-propanol, 1-butanol, 1-pentanol, and 1-hexanol were obtained by a cloud point method. The upper critical solution temperatures of the ionic liquid and alcohol mixtures were determined from the mutual solubility data. The upper critical solution temperature of the binary mixtures gradually increased as the chain length of the alcohol increased. The mutual solubility data of binary systems ([bmmim][BF4] + alcohols) have been correlated by the original UNIQUAC model as well as the extended and modified form of the UNIQUAC model. The temperature dependence of the mutual solubility data could be represented in terms of the temperature dependence of the binary energy parameters obtained from the correlation. Additionally the influence of water contamination on the ionic liquid mixture was shown experimentally by adding pure water into the binary mixture ([bmmim][BF4] + 1-butanol).  相似文献   

16.
The solubilities of ketoconazole in binary and ternary mixtures of water, ethanol and polyethylene glycols 200, 400 or 600 (185 data points) were determined at 298.2 K. Williams–Amidon and Jouyban–Acree cosolvency models were used to model the data, with overall mean relative deviations (OMRDs) for the solubility data in binary and ternary solvents of 17.5 and 23.5%, respectively. For predicting the solubility data of ketoconazole the trained versions of the models were used and the OMRD values were 47.7 and 33.0%, respectively.  相似文献   

17.
A series of terpolymers were synthesized by the chemical oxidative polymerization of m‐phenylenediamine (MPD), o‐anisidine (AS), and 2,3‐xylidine (XY) in hydrochloride aqueous medium. The yield, intrinsic viscosity, and solubility of the terpolymers were studied by changing the MPD/AS/XY molar ratio from 100/0/0 to 53/39/8 to 0/100/0. It was discovered that the MPD/AS/XY terpolymers exhibit a higher polymerization yield and better solubility than MPD/AS and MPD/XY bipolymers having the same MPD molar content. The as‐prepared MPD/AS/XY terpolymer bases were characterized by Fourier transform infrared, ultraviolet–visible, 1H NMR, and high‐resolution solid‐state 13C NMR spectroscopies; wide‐angle X‐ray diffraction; and thermogravimetry. The results suggested that the oxidative polymerization from MPD, AS, and XY is exothermic, and the resulting terpolymers are more easily soluble in some organic solvents than MPD homopolymer. The copolymer obtained was a real terpolymer containing MPD, AS, and XY units, and the actual MPD/AS/XY molar ratio calculated by solid‐state 13C NMR spectra of the polymers is very close to the feed ratio, although the AS content calculated on the basis of the 1H NMR spectrum of the soluble part of the polymer is higher than the feed AS content. The terpolymers and MPD homopolymer exhibit a higher polymerization yield and much higher intrinsic viscosity and are more amorphous than the AS homopolymer. At a fixed MPD content of 70 mol %, the terpolymers exhibit an increased thermostability and activation energy of the major degradation in nitrogen and air with an increasing AS content. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3989–4000, 2001  相似文献   

18.
The solubility of Zr(OH)4(am)--in other words hydrated Zr(IV) oxyhydroxide--is determined by means of coulometric titration (CT), and colloids are detected by laser-induced breakdown when the solubility limit is exceeded. Our results at pH 3-8 demonstrate that the solubility of Zr(OH)4(am) is several orders of magnitude higher than reported classical solubility data for acidic solutions, determined from undersaturation with a less soluble microcrystalline Zr(IV) oxide precipitate. Analysis of extended X-ray absorption fine structure (EXAFS) data shows that the microcrystalline colloids in a 0.1 mol l(-1) Zr aqueous solution at pH 0.2 contain tetrameric units, similar to those present in the structure of ZrOCl2.8H2O. Characterization of the CT solutions by means of EXAFS shows that oligomeric species form as the solubility limit is approached. The current lack of data on equilibrium constants for polynuclear hydroxide complexes prohibits the use of a realistic speciation model to describe the solubility of pH-dependent Zr(OH)4(am). However, the solubility curve is obtained using the mononuclear hydrolysis constants estimated in the present paper, along with the solubility constant (log K'sp=-49.9+/-0.5 in 0.5 mol l(-1) NaCl; log K degrees(sp)=-53.1+/-0.5 at I=0).  相似文献   

19.
This study is aimed at evaluating the applicability of the Jouyban–Acree model for predicting the solubility of polycyclic aromatic hydrocarbons (PAHs) in binary and ternary solvent mixtures at different temperatures by employing a large solubility data set. The solubility is predicted in solvent mixtures at different temperatures within an acceptable error range based on the experimental solubility data of PAHs in mono-solvents. The results reveal that the Jouyban–Acree model could be recommended for practical applications in chemical industries.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号