首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
杨国辉  李言信  颜世海  代丽  赵斌 《化学学报》2011,69(15):1743-1750
研究了2-[(4-氯苯基亚氨基)甲基]-8-羟基喹啉的三种质子转移途径: 分子内质子转移、水分子辅助质子转移和甲醇分子辅助质子转移. 以该席夫碱化合物的晶体结构作为模型, 在B3LYP/6-31+G(d)水平上, 优化得到稳定态和过渡态的几何构型. 对三类质子转移前后的结构、能量、红外光谱、化学位移进行研究, 结果表明水分子辅助质子转移和甲醇分子辅助质子转移中, 水和甲醇分子利用氢键作用参与质子转移过程, 形成七元环状过渡态, 大大降低了反应的能垒, 有利于质子的转移, 氢键在降低活化能方面起着重要作用.  相似文献   

2.
5-氯尿嘧啶质子转移异构化的密度泛函理论研究   总被引:2,自引:0,他引:2  
采用密度泛函B3LYP/6-311+G**方法,对5-氯尿嘧啶分子内质子转移及水助催化质子转移引起的互变异构反应机理进行了计算研究,获得了互变异构过程的反应焓、活化能、活化吉布斯自由能和质子转移反应的速率常数等参数。计算结果表明,5-氯尿嘧啶无论是孤立分子还是一水合物,其双酮式CU1是最稳定异构体,由双酮式向烯醇式异构化找到3条通道(P1,P2,P3),各通道速控步骤的活化能分别为177.85、177.05和197.58kJ/mol。当水分子参与反应以双质子转移机理异构化时,活化能显著降低,各通道速控步骤的活化能依次降为66.24、69.36和77.85kJ/mol,有利于双酮式向烯醇式或酮醇式转变。计算结果还表明,氢键作用在增大5-氯尿嘧啶一水复合物稳定性、降低质子转移异构化反应活化能等方面起着重要作用。  相似文献   

3.
采用密度泛函B3LYP方法和6-31G(d,p)基组,对甲酸与质子性溶剂水分子(用W表示)形成的HCOOH-(H_2O)_n(n=1~3)复合物在气相时发生的基态多质子转移反应过程进行了理论研究.7个甲酸复合物HCOOH-W,HCOOH-W_2,HCOOH-W-aW,HCOOH-W-dW,HCOOH-W_3,HCOOH-W_2-aW和HCOOH-W_2-dW中发生的多质子转移反应都是以异步协同质子迁移方式进行.甲酸复合物HCOOH-(H_2O)_n(n=1~3)中水分子的数量和氢键链连接方式对基态多质子转移反应有显著影响.  相似文献   

4.
采用B3LYP/DZP++的方法研究了第一水化层作用和连续化处理的水溶剂作用对鸟嘌呤-胞嘧啶(GC)碱基对和腺嘌呤-胸腺嘧啶(AT)碱基对质子转移反应的影响.GC和AT碱基对在连续化水溶剂作用下,均发生单质子转移(SPT1)和分步的双质子转移(DPT),而在第一水化层5个水分子的作用下(GC·5H2O,AT·5H2O)或同时考虑第一水化层作用和连续化水溶剂作用(GC·5H2O+PCM,AT·5H2O+PCM)时,GC和AT碱基对的质子转移均只得到单质子转移反应(SPT1).单质子转移过程中的活化能变化情况表明:第一水化层对GC和AT碱基对结构和质子转移影响较大,水环境对碱基对的作用主要发生在第一水化层.  相似文献   

5.
在B3LYP/6-31G(d,p)和TD B3LYP/6-31++G(d,p)//CIS/6-31G(d,p)水平上,研究了2-(3-巯基-2-吡啶基)苯并咪唑(MPyBI)在气相和七种溶剂(环己烷、苯、三氯甲烷、乙醇、乙腈、二甲亚砜和水)中基态和激发态的分子内质子转移(GSIPT和ESIPT)过程.在基态势能面的研究中发现,该化合物存在分子内双质子转移,其中分步的双质子转移在动力学上具有优势.同时对激发态质子转移势能面及激发态转移过程中的光物理现象进行了研究,结果表明该化合物存在快速的无能垒的激发态分子内质子转移,随着溶剂极性的增强,可以降低基态过渡态的能垒,改变硫醇式与硫酮式互变异构体的比例,从而灵敏地控制荧光的强度.  相似文献   

6.
5-氟尿嘧啶和5-氯尿嘧啶及其互变异构体的理论计算研究   总被引:8,自引:0,他引:8  
李宝宗 《化学学报》2005,63(16):1495-1499
采用HF/3-21G方法, 对6种气相和水相中可能存在的5-氟尿嘧啶(和5-氯尿嘧啶)互变异构体进行了构象分析.采用B3LYP/6-311+G**方法对处于优势构象时的各互变异构体进行了几何全优化, 并计算出它们的总能量、焓、熵、吉布斯自由能. Onsager反应场溶剂模型用于水相的计算. 计算结果表明, 5-氟尿嘧啶和5-氯尿嘧啶在气相中和水相中主要以双酮形式存在. 5-氟尿嘧啶和5-氯尿嘧啶的熵效应小, 对互变异构平衡没有显著的影响, 而焓变对互变异构产生了主要的影响. 讨论了水溶剂化作用对异构体的能量、电荷分布和偶极矩的影响. 溶剂化自由能与异构体的气相偶极矩存在相关性. 另外, 详细地将5-氟尿嘧啶和5-氯尿嘧啶与尿嘧啶进行了对比, 获得三者最稳定异构体间电子结构异同的有用信息.  相似文献   

7.
5-氟胞嘧啶气相及水助质子转移异构化的理论研究   总被引:3,自引:0,他引:3  
采用密度泛函B3LYP/6-311G**方法,对6种5-氟胞嘧啶异构体孤立分子的稳定性及质子转移引起的酮式-烯醇式、氨基式-亚胺式互变异构反应机理进行了计算研究,获得了零点能、吉布斯自由能及质子转移过程的反应焓、活化能、活化吉布斯自由能和速率常数等参数.计算结果表明,气相中烯醇-氨基式FC4是最稳定的异构体.分子内质子转移设计了FC1→FC2和FC1→FC6两条通道,分别标记为P(1)和P(2),各通道速控步骤的活化能和速率常数分别为155.9 kJ·mol-1,4.70×10-15 s-1和173.1 kJ·mol-1,1.41×10-18 s-1.水助催化时,相应通道P(3) 和P(4) 速控步骤的活化能和速率常数分别为51.0 kJ·mol-1,1.41×103 s-1和88.2 kJ·mol-1,4.53×10-3 s-1.可见,水分子的加入极大地降低了质子转移的活化能垒.另外发现,水分子参与形成协同的双质子转移机理比水助单质子转移机理更利于降低活化能垒.  相似文献   

8.
采用B3LYP/DZP++的方法研究了第一水化层作用和连续化处理的水溶剂作用对鸟嘌呤-胞嘧啶(GC)碱基对和腺嘌呤-胸腺嘧啶(AT)碱基对质子转移反应的影响. GC和AT碱基对在连续化水溶剂作用下,均发生单质子转移(SPT1)和分步的双质子转移(DPT),而在第一水化层5 个水分子的作用下(GC·5H2O,AT·5H2O)或同时考虑第一水化层作用和连续化水溶剂作用(GC·5H2O+PCM,AT·5H2O+PCM)时,GC和AT碱基对的质子转移均只得到单质子转移反应(SPT1). 单质子转移过程中的活化能变化情况表明:第一水化层对GC和AT碱基对结构和质子转移影响较大,水环境对碱基对的作用主要发生在第一水化层.  相似文献   

9.
甲酰胺酮式和烯醇式的互变异构(FM→FA)可被视为DNA中生物碱基点突变的一个模型. 使用B3LYP密度范函的计算方法, 在B3LYP/6-311++G**的基组条件下运用SCRF溶液模型研究了溶液环境对甲酰胺互变异构的影响. 研究表明, 从水分子对甲酰胺异构的作用进行划分, 分子的周围有三个不同的区域, 和气态计算结果一致, 在一些区域中, 水对异构起到了催化的作用; 而在其它区域中, 水分子却能阻碍反应的进行,保护酮式, 同时溶液环境的存在也使两种作用得到了加强和削弱. 溶液状态下的质子转移研究将会对水分子对中心分子的异构化研究提供参考, 同时也部分解释了试验中酮式比例高于烯醇式的现象.  相似文献   

10.
5-氟尿嘧啶及其衍生物是一类抗代谢抗癌药物,由于5-氟尿嘧啶的脂溶性低,选择性较差.为了提高其选择性,降低药物的毒副作用,增强原药的效果,许多药物科学家和化学工作者对其进行结构上的修饰和改造.一方面在5-氟尿嘧啶分子中引入亲脂性较大的基团,另一方面将生物体内源物质引入到5-氟尿嘧啶分子中,已成功开发了如替加氟(Tegafur)等前药.糖类物质与生命现象有着密切的关系,在细胞识别、血型区分等多种生理功能中起着重要作用,且糖苷类化合物具有一定程度的抗癌活性.基于此,我们将糖苷类物质引入到5-氟尿嘧啶分子中,设计合成了一类含糖苷的5-氟尿嘧啶衍生物,目标产物的合成路线如下:  相似文献   

11.
For the purpose of investigating the tautomerism from glycinamide (G) to glycinamidic acid (G*) induced by proton transfer, we carried out a study of structural interconversion of the two tautomers and the relative stabilizing influences of water during the tautomerization process. Throughout the study, we used density functional theory (DFT) calculations at the B3LYP/6-311++G** level of theory, also considering the correction functions, that is, the effect of basis set superposition error (BSSE). Totally, 42 geometries, including fourteen important transition states, were optimized, and their geometric parameters have also been discussed in detail. Water molecules were gradually put in three different regions in the vicinity of G and its tautomer G*. The calculation results indicate that water in two of these regions can protect G from tautomerizing to G*, while in another region, water can assist in the tautomerism; this reveals that water molecules have stabilization and mutagenicity effects for G simultaneously.  相似文献   

12.
The keto–enol tautomerism of cyameluric acid, both in gas phase and in water and methanol solution, has been studied at the B3LYP/6-31++g(d,P) level of theory in this paper. The harmonic frequencies of all the structures are calculated. The results show that the transition states of the tautomerism are 4-membered ring conformations in gas phase, whereas 6-membered ring conformations in solution. In the first proton transfer, activation energy ΔE# is 56.4 and 50.9 kJ/mol for water and methanol solution, respectively, which is much lower than that in gas phase (163.2 kJ/mol). Solvent molecules (water and methanol) produce an important catalytic effect in the tautomerism, especially for methanol-solvated system. NBO analysis shows that there is a strong interaction between cyameluric acid and solvent molecules in transition states. AIM charge analysis indicates that the keto–enol tautomerism shows a certain degree of proton transfer character. From the reaction enthalpy and reaction rate point of view, keto–enol tautomerism in water-solvated and methanol-solvated system is easier than that in gas phase. The keto–enol tautomerisms are endothermic both in gas phase and in solution, so the enol forms are less stable than the keto ones.  相似文献   

13.
To systematically investigate all the possible tautomerisms from uracil (U) and its enol form (U) induced by proton transfer, we describe a study of structural tautomer interconversion in the gas phase, in a continuum solvent, and in a microhydrated environment with 1 or 2 explicit water molecules, using density functional theory (DFT) calculations by means of the B3LYP exchange and correlation functions. A total of 62 geometries including 25 transition states were optimized, and the geometrical parameters have been discussed. Some rules of the configuration variation in tautomerization were summarized. The relative stabilities of all the tautomers were established. When a proton transfers from the di-keto form to the keto-enol form, water molecules in different regions show absolutely opposite effects: some assist, whereas others hinder the tautomerization. However, when a proton transfers from the keto-enol form to the di-enol form, water molecules in different regions show similar effects: the Gibbs free energy always increases and the activation energy always decreases. Additionally, some important factors that obviously affect the activation energy and Gibbs free energy were found and discussed in detail. The reasons that water molecules can assist or prevent the proton transfer were given. Furthermore, on the basis of our calculated results, we explain why it is hard to detect the di-enol form of uracil in general experiments.  相似文献   

14.
The structure and energies of six tautomeric forms of 5-hydroxy-6-methyluracil (OMU) and their 1:n (n = 1−4) complexes with water were determined by the density functional theory (PBE/3z) method. The stability series of the tautomers and changes in it depending on the number of water molecules in the nearest environment of the tautomer were found. The effect of the water solvent was also included using the continuum (B3LYP/6-311+G(2d,p), COSMO) model. Both complex formation and medium effects significantly influenced the stability series of the tautomers. Although the decrease in the energy of the diketo form on hydration was smaller than for the enol states, diketo tautomer a remained the most stable form of OMU in solution. Inclusion of hydration in calculations suggests that the energies of three enol tautomers b–d were equalized (ΔH ≈ 5.5 kJ/mol). This should be taken into account for the conditions that facilitate the keto-enol tautomerism of OMU.  相似文献   

15.
Isomerization and tautomerism reactions of the active form of vitamin B6, pyridoxal phosphate, are studied at B3LYP level of theory using 6-311++G(2df,p) basis set in gas and aqueous phases. Twenty-three transition state (TS) structures for vitamin B6 isomerization are optimized, including 13 TS structures for O–H and C–C rotations, 8 TS structures for imine–enamine tautomerism, and 2 TS structures for keto–enol tautomerism. Activation energy (E a), imaginary frequency (υ), and Gibbs free energy of activation (ΔG #) for the isomerization reactions are calculated. The activation energies of the imine–enamine tautomerism are in the range of 190–280 kJ/mol and of O–H and C–C rotations are mainly less than 60 kJ/mol. Also, our calculation shows that the imine forms of B6 are mainly more stable than the enamine forms. Effect of microhydration on the TS structures and activation energies is also investigated. It is found that the presence of water molecules catalyzes only the imine–enamine tautomerism.  相似文献   

16.
A photochromic symmetric Schiff base, N,N'-bis(salicylidene)-p-phenylenediamine, is proposed as a probe for the study of solvent dependent enol-keto tautomerism in the ground and excited states. The ground state equilibrium between the enol-keto tautomers is found to depend mainly not on polarity but on the proton donating ability of the solvent. Upon selective excitation of each of these tautomers, the same excited state of a keto tautomer is created: in enol, after the ultrafast excited state intramolecular proton transfer (ESIPT), reaction, and in keto tautomer, directly. Then some part (<30%) of excited molecules are transferred to the photochromic form in its ground state. The evidence of another ultrafast deactivation channel in the excited enol tautomer competing with ESIPT has been found. The solvent does not influence the ESIPT dynamics nor the efficiency of the creation of the photochrome.  相似文献   

17.
The keto-enol tautomerism of some cyclic 2-nitroalkanones was studied in cyclohexane. Keto-enol equilibrium constants, K(T), at 25 °C were obtained from (1)H NMR spectra. The relative enol content for the investigated ketones as a function of ring size decreases in the order 6 > 7 > 11 > 12 > 15. This trend apparently is different from that observed in water. Density functional theory (DFT) calculations have been performed to rationalize the effects of ring size and of the solvent on tautomerism. The acidity constants, K(a)(KH), for the different keto tautomers were measured spectrophotometrically at 25 °C in buffered aqueous solutions. No simple correlations between K(a)(KH) and ring size was observed, and this is in agreement with a DFT analysis performed on the same compounds.  相似文献   

18.
UV absorption spectra of 1,3-diphenylpropane-1,3-dione (1), its three methoxy derivatives (24) and its six dimethoxy derivatives (510) in various solvents dissolved were collected. The keto–enol tautomerism equilibrium constant was calculated with 1H NMR. The position of the methoxy group in 1,3-diphenylpropane-1,3-dione was shown to have an influence on the molecule's UV absorption spectrum and the keto–enol tautomerism equilibrium constant. The methoxy group in the para position increases the absorption of radiation in the UV-A range. A shift to the keto form in the keto–enol tautomerism equilibrium is experienced by compounds with methoxy groups in ortho position. When two methoxy groups are present, the influence of their position is cumulative.  相似文献   

19.
Isomerization and tautomerism of 12 isomers of pyruvic acid including 4 keto and 8 enol forms were studied at the MP2 and B3LYP levels of theory using 6‐311++G(2df,p) basis set, separately. Activation energy (Ea), imaginary frequency (υ), and Gibbs free energy (ΔG#) of the considered isomerization and tautomerism reactions were calculated. Interconversion of the enol forms proceeds through two paths: (i) proton transfer and (ii) internal rotation. Activation energies for the proton transfer paths were in the range of 125–145 kJ/mol and for the internal rotation paths were in the range of 5–45 kJ/mol. Keto–enol tautomerism of pyruvic acid proceeds only through proton transfer route and their activation energies were in the range of 200–300 kJ/mol. Effect of microhydration on the transition state structures and activation energies was also investigated. It was found that the presence of a water molecule catalyzes the isomerization and tautomerism reactions of pyruvic acid so that the activation energies decrease. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号