首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decalin is the simplest polycyclic alkane (polynaphtenic hydrocarbon) found in liquid fuels (jet fuels, Diesel). In order to better understand the combustion characteristics of decalin, this study provides new experimental data for its oxidation in a jet-stirred reactor. For the first time, stable species concentration profiles were measured in a jet-stirred reactor at a constant mean residence time of 0.1 s and 0.5 s at respectively 1 and 10 atm, over a range of equivalence ratios (? = 0.5–1.5) and temperatures (750–1350 K). The oxidation of decalin under these experimental conditions was modeled using a semi-detailed chemical kinetic reaction mechanism (11,000 reactions involving 360 species) derived from a previously proposed scheme for the ignition of the same fuel in a shock-tube. The proposed mechanism that includes both low- and high-temperature chemistry shows reasonably good agreement with the present experimental data set. It can also represent well decalin pyrolysis and oxidation data available in the literature. Reaction path analyses and sensitivity analyses were conducted to interpret the results.  相似文献   

2.
Laminar flame speeds and extinction strain rates of cyclopentadiene/air mixture were determined in the counterflow configuration at atmospheric pressure, unburned mixture temperature of 353 K, and for a wide range of equivalence ratios. The experiments were modeled using recently developed kinetic models. Sensitivity analyses showed that both flame propagation and extinction of cyclopentadiene/air mixtures flames depend notably on the fuel kinetics and subsequent intermediates such as cyclopentadienyl, cyclopentadienone, and cyclopentadienoxy. Analyses of the computed flame structures revealed that the high temperature oxidation of cyclopentadiene depends in general on the kinetics of first few intermediates in the oxidation process following the fuel consumption. The potential reaction pathways of the consumption of cyclopentadienyl radicals were discussed and further investigation and validation is recommended for two relevant reactions that could improve the high temperature oxidation kinetic model of cyclopentadiene. The experimental flame data of this study are the first ones to be reported.  相似文献   

3.
Effects of tube diameter and equivalence ratio on reaction front propagations of ethylene/oxygen mixtures in capillary tubes were experimentally analyzed using high speed cinematography. The inner diameters of the tubes investigated were 0.5, 1, 2 and 3 mm. The flame was ignited at the center of the 1.5 m long smooth tube under ambient pressure and temperature before propagated towards the exits in the opposite directions. A total of five reaction propagation scenarios, including deflagration-to-detonation transition followed by steady detonation wave transmission (DDT/C–J detonation), oscillating flame, steady deflagration, galloping detonation and quenching flame, were identified. DDT/C–J detonation mode was observed for all tubes for equivalence ratios in the vicinity of stoichiometry. The velocity for the steady detonation wave propagation was approximately Chapman–Jouguet velocity for 1, 2, and 3 mm I.D. tubes; however, a velocity deficit of 5% was found for the case in 0.5 mm I.D. tube. For leaner mixtures, an oscillating flame mode was found for tubes with diameters of 1 to 3 mm, and the reaction front travelled in a steady deflagrative flame mode with velocities around 2–3 m/s when the mixture equivalence ratio becomes even leaner. Galloping detonation wave propagation was the dominant mode for the fuel lean regime in the 0.5 mm I.D. tube. For rich mixtures beyond the detonation limits, a fast flame followed by flame quenching was observed.  相似文献   

4.
Alkyl aromatics are an important chemical class in gasoline, jet and diesel fuels. In the present work, an n-propylbenzene and n-heptane mixture is studied as a possible surrogate for large alkyl benzenes contained in diesel fuels. To evaluate it as a surrogate, ignition delay times have been measured in a heated high pressure shock tube (HPST) for a mixture of 57% n-propylbenzene/43% n-heptane in air (≈21% O2, ≈79% N2) at equivalence ratios of 0.29, 0.49, 0.98 and 1.95 and compressed pressures of 1, 10 and 30 atm over a temperature range of 1000–1600 K. The effects of reflected-shock pressure and equivalence ratio on ignition delay time were determined and common trends highlighted. A combined n-propylbenzene and n-heptane reaction mechanism was assembled and simulations of the shock tube experiments were carried out. The simulation results showed very good agreement with the experimental data for ignition delay times. Sensitivity and reaction pathway analyses have been performed to reveal the important reactions responsible for fuel oxidation under the shock tube conditions studied. It was found that at 1000 K, the main consumption pathways for n-propylbenzene are abstraction reactions on the alkyl chain, with particular selectivity to the allylic site. In comparison at 1500 K, the unimolecular decomposition of the fuel is the main consumption pathway.  相似文献   

5.
Ignition delay time measurements of H2/O2/NO2 mixtures diluted in Ar have been measured in a shock tube behind reflected shock waves. Three different NO2 concentrations have been studied (100, 400 and 1600 ppm) at three pressure conditions (around 1.5, 13, and 30 atm) and for various H2–O2 equivalence ratios for the 100 ppm NO2 case. Results were compared to some recent ignition delay time measurements of H2/O2 mixtures. A strong dependence of the ignition delay time on the pressure and the NO2 concentration was observed, whereas the variation in the equivalence ratio did not exhibit any appreciable effect on the delay time. A mechanism combining recent H2/O2 chemistry and a recent high-pressure NOx sub-mechanism with an updated reaction rate for H2 + NO2 ? HONO + H was found to represent correctly the experimental trends over the entire range of conditions. A chemical analysis was conducted using this mechanism to interpret the experimental results. Ignition delay time data with NO2 and other NOx species as additives or impurities are rare, and the present study provides such data over a relatively wide pressure range.  相似文献   

6.
The oxidation of two blends, benzene/n-decane and toluene/n-decane, was studied in a jet-stirred reactor with gas chromatography analysis (temperatures from 500 to 1100 K, atmospheric pressure, stoichiometric mixtures). The studied hydrocarbon mixtures contained 75% of aromatics in order to highlight the chemistry of the low-temperature oxidation of these two aromatic compounds which have a very low reactivity compared to large alkanes. The difference of behavior between the two aromatic reactants is highly pronounced concerning the formation of derived aromatic products below 800 K. In the case of benzene, only phenol could be quantified. In the case of toluene, significant amounts of benzaldehyde, benzene, and cresols were also formed, as well as several heavy aromatic products such as bibenzyl, phenylbenzylether, methylphenylbenzylether, and ethylphenylphenol. A comparison with results obtained with neat n-decane showed that the reactivity of the alkane is inhibited by the presence of benzene and, to a larger extent, toluene. An improved model for the oxidation of toluene was developed based on recent theoretical studies of the elementary steps involved in the low-temperature chemistry of this molecule. Simulations using this model were successfully compared with the obtained experimental results.  相似文献   

7.
The hetero-/homogeneous combustion of fuel-lean ethane/air mixtures over platinum was investigated experimentally and numerically at pressures of 1–14 bar, equivalence ratios of 0.1–0.5, and surface temperatures ranging from 700 to 1300 K. Experiments were carried out in an optically accessible channel-flow reactor and included in situ 1-D Raman measurements of major gas phase species concentrations across the channel boundary layer for determining the catalytic reactivity, and planar laser induced fluorescence (LIF) of the OH radical for assessing homogeneous ignition. Numerical simulations were performed with a 2-D CFD code with detailed hetero-/homogeneous C2 kinetic mechanisms and transport. An appropriately amended heterogeneous reaction scheme has been proposed, which captured the increase of ethane catalytic reactivity with rising pressure. This scheme, when coupled to a gas-phase reaction mechanism, reproduced the combustion processes over the reactor extent whereby both heterogeneous and homogeneous reactions were significant and moreover, provided good agreement to the measured homogeneous ignition locations. The validated hetero-/homogeneous kinetic schemes were suitable for modeling the catalytic combustion of ethane at elevated pressures and temperatures relevant to either microreactors or large-scale gas turbine reactors in power generation systems. It was further shown that the pressure dependence of the ethane catalytic reactivity was substantially stronger compared to that of methane, at temperatures up to 1000 K. Implications for high-pressure catalytic combustion of natural gas were finally drawn.  相似文献   

8.
Ignition temperatures of non-premixed cyclohexane, methylcyclohexane, ethylcyclohexane, n-propylcyclohexane, and n-butylcyclohexane flames were measured in the counterflow configuration at atmospheric pressure, a free-stream fuel/N2 mixture temperature of 373 K, a local strain rate of 120 s?1, and fuel mole fractions ranging from 1% to 10%. Using the recently developed JetSurf 2.0 kinetic model, satisfactory predictions were found for cyclohexane, methyl-, ethyl-, and n-propyl-cyclohexane flames, but the n-butylcyclohexane data were overpredicted by 20 K. The results showed that cyclohexane flames exhibit the highest ignition propensity among all mono-alkylated cyclohexanes and n-hexane due to its higher reactivity and larger diffusivity. The size of mono-alkyl group chain was determined to have no measurable effect on ignition, which is a result of competition between fuel reactivity and diffusivity. Detailed sensitivity analyses showed that flame ignition is sensitive primarily to fuel diffusion and also to H2/CO and C1–C3 hydrocarbon kinetics.  相似文献   

9.
High pressure iso-octane shock tube experiments were conducted to assist in the development of a Jet A surrogate kinetic model. Jet A is a kerosene based jet fuel composed of hundreds of hydrocarbons consisting of paraffins, olefins, aromatics and naphthenes. In the formulation of the surrogate mixture, iso-octane represents the branched paraffin class of hydrocarbons present in aviation fuels like Jet A. The experimental work on iso-octane was performed in a heated high pressure single pulse shock tube. The mole fractions of the stable species were determined using gas chromatography and mass spectroscopy. Experimental data on iso-octane oxidation and pyrolysis were obtained for temperatures from 835 to 1757 K, pressures from 21 to 65 atm, reactions times from 1.11 to 3.66 ms, and equivalence ratios from 0.52 to 1.68, and ∞. Iso-octane oxidation showed that the fuel decays through thermally driven oxygen free decomposition at conditions studied. This observation prompted an experimental and modeling study of iso-octane pyrolysis using an iso-octane sub-model taken from a recently published n-decane/iso-octane/toluene surrogate model. The revised iso-octane sub-model showed improvements in predicting intermediate species profiles from pyrolytic experiments and oxidation experiments. The modifications to the iso-octane sub-model also contributed to better agreement in predicting the formation of carbon monoxide and carbon dioxide when compared to the recently published 1st Generation Surrogate model and a recently published iso-octane oxidation model. Model improvements were also seen in predicting species profiles from flow reactor oxidation experiments and ignition delay times at temperatures above 1000 K at both 10 and 50 atm.  相似文献   

10.
Ignition energies for short duration (<50 ns) spark discharges were measured for undiluted and nitrogen-diluted H2-N2O mixtures of equivalence ratios ? = 0.15 and 0.2, dilution of 0% and 20% N2, and initial pressures of 15–25 kPa. The ignition events were analyzed using statistical tools and the probability of ignition versus spark energy density (spark energy divided by the spark length) was obtained. The simple cylindrical ignition kernel model was compared against the results from the present study. Initial pressure has a significant effect on the width of the probability distribution, ranging from a broad (P = 15 kPa) to a narrow (P = 25 kPa) probability distribution indicating that the statistical variation of median spark energy density increases as initial pressure of the mixture decreases. A change in the equivalence ratio from 0.15 to 0.2 had a small effect on the median spark energy density. The addition of 20% N2 dilution caused a significant increase in the median spark energy density when compared to no dilution. The extrapolation of the present results to atmospheric pressure, stoichiometric H2-N2O indicates that the electrostatic discharge ignition hazards are comparable to or greater than H2-O2 mixtures.  相似文献   

11.
Ignition-delay times for pure 3-pentanone, 3-pentanone/iso-octane (10/90% by volume) and 3-pentanone/n-Heptane mixtures (10/90% by volume) have been determined in a high-pressure shock tube under engine-relevant conditions (p5 = 10, 20, and 40 bar) for equivalence ratios ? = 0.5 and 1.0 and over a wide temperature range 690 K < T5 < 1270 K. The results were compared to ignition delay times of primary reference fuels under identical conditions. A detailed kinetics model is proposed for the ignition of all fuel mixtures. The model predicts well the ignition delay times for pure 3-pentanone for a wide range of pressure and temperature and equivalence ratios in argon dilution as well as in air. Ignition delay times for 3-pentanone-doped mixtures, especially in the low-temperature range are overpredicted by approx. a factor of 0.5 (at 800 K, 40 bar, ? = 1.0) by the calculation but the model still reproduces the overall trend of the experimental data. For lean conditions, 10% 3-pentanone reduces the reactivity of n-Heptane below 1000 K while for stoichiometric conditions it does not alter the ignition delay by more than 11% at 850 K and 20 bar. In iso-octane the effect is inverse, leading to acceleration of the main ignition. Based on the model, the influence of 3-pentanone on the main heat release in a n-Heptane-fueled HCCI engine cycle is simulated.  相似文献   

12.
A study of the oxidation of ethylbenzene has been performed in a jet-stirred reactor (JSR) at quasi-atmospheric pressure (800 Torr), at temperatures ranging 750–1100 K, at a mean residence time of 2 s and at three equivalence ratios ? (0.25, 1, and 2). Reactants and 25 reaction products were analyzed online by gas chromatography after sampling in the outlet gas. A new mechanism for the oxidation of ethylbenzene was proposed whose predictions were in satisfactory agreement with the measured species profiles obtained in JSR and with flow reactor data from the literature. A flow rate analysis has been performed at 900 K showing the important role of the combinations with HO2 radicals of resonance stabilized radicals obtained from ethylbenzene by H-atom abstractions. Other important reactions of ethylbenzene are the ipso-additions of H- and O-atoms and of methyl radicals to the aromatic ring.  相似文献   

13.
Species concentration time-histories were measured during oxidation for the large, normal-alkane, diesel-surrogate component n-hexadecane. Measurements were performed behind reflected shock waves in an aerosol shock tube, which allowed for high fuel loading without pre-test heating and possible decomposition and oxidation. Experiments were conducted using near-stoichiometric mixtures of n-hexadecane and 4% oxygen in argon at temperatures of 1165–1352 K and pressures near 2 atm. Concentration time-histories were recorded for five species: C2H4, CH4, OH, CO2, and H2O. Methane was monitored using DFG laser absorption near 3.4 μm; OH was monitored using UV laser absorption at 306.5 nm; C2H4 was monitored using a CO2 gas laser at 10.5 μm; and CO2 and H2O were monitored using tunable DFB diode laser absorption at 2.7 and 2.5 μm, respectively. These time-histories provide critically needed kinetic targets to test and refine large reaction mechanisms. Comparisons were made with the predictions of two diesel-surrogate reaction mechanisms (Westbrook et al. [1]; Ranzi et al. [9]) that include n-hexadecane, and areas of needed improvement in the mechanisms were identified. Comparisons of the intermediate product yields of ethylene for n-hexadecane with those found for other smaller n-alkanes, show that an n-hexadecane mechanism derived from a simple hierarchical extrapolation from a smaller n-alkane mechanism does not properly simulate the experimental measurements.  相似文献   

14.
Chargeability of ethanol–petrol biofuels during refuelling has been studied in real dispenser environment in order to assess safety risks due to fuel charging at fuel filling stations. Two biofuel blends were studied: E10 containing 10 vol-% of ethanol and 90 vol-% of petrol, and E85 containing about 85 vol-% of ethanol and 15 vol-% of petrol. Charging of standard 95 Octane petrol was studied as a reference. The results show that the charging of E85 is negligible and no charge will be accumulated as long as the fuel dispenser system is properly grounded. In the case of refuelling with E10, charge is accumulated but the level of total charge is still so low that no real electrostatic ignition hazards exist due to fuel charging at filling stations as long as the system is properly grounded. Electrostatic ignition hazards due to fuel charging are real only for standard petrol fuel.  相似文献   

15.
The classical topic on the oxidation of alkylbenzene has been revisited via performing accurate theoretical calculations to address the salient features for the initial oxidation of ethylbenzene. Potential energy surfaces are mapped out for all possible reactions in the systems of (1-phenylethyl + O2 and 2-phenylethyl + O2). Reaction rate constants at the high-pressure limit are calculated for all possible reactions in these two systems. Direct H abstraction from 1-phenylethyl radical by oxygen molecule appears to be an important route for the formation of styrene from the oxidation of ethylbenzene. Concerted elimination of HO2 is predicted to contribute significantly the production of styrene from system of 2-phenylethyl + O2; especially at the atmospheric pressure and intermediate temperatures. Formation of the other major experimental product, benzaldehyde, is attributed to the unimolecular decomposition of C6H5CH2(O)CH3 rather than to unimolecular isomerisation of the two initial peroxy adducts. Kinetic and mechanistic data presented herein are instrumental for better understanding of the oxidative decomposition of ethylbenzene, i.e., major constituents of commonly formulated fuel surrogates.  相似文献   

16.
Butanol isomers are promising next-generation biofuels. Their use in internal combustion applications, especially those relying on low-temperature autoignition, requires an understanding of their low-temperature combustion chemistry. Whereas the high-temperature oxidation chemistry of all four butanol isomers has been the subject of substantial experimental and theoretical efforts, their low-temperature oxidation chemistry remains underexplored. In this work we report an experimental study on the fundamental low-temperature oxidation chemistry of two butanol isomers, tert-butanol and isobutanol, in low-pressure (4–5.1 Torr) experiments at 550 and 700 K. We use pulsed-photolytic chlorine atom initiation to generate hydroxyalkyl radicals derived from tert-butanol and isobutanol, and probe the chemistry of these radicals in the presence of an excess of O2 by multiplexed time-resolved tunable synchrotron photoionization mass spectrometry. Isomer-resolved yields of stable products are determined, providing insight into the chemistry of the different hydroxyalkyl radicals. In isobutanol oxidation, we find that the reaction of the α-hydroxyalkyl radical with O2 is predominantly linked to chain-terminating formation of HO2. The Waddington mechanism, associated with chain-propagating formation of OH, is the main product channel in the reactions of O2 with β-hydroxyalkyl radicals derived from both tert-butanol and isobutanol. In the tert-butanol case, direct HO2 elimination is not possible in the β-hydroxyalkyl + O2 reaction because of the absence of a beta C–H bond; this channel is available in the β-hydroxyalkyl + O2 reaction for isobutanol, but we find that it is strongly suppressed. Observed evolution of the main products from 550 to 700 K can be qualitatively explained by an increasing role of hydroxyalkyl radical decomposition at 700 K.  相似文献   

17.
Reaction rate coefficients for the major high-temperature methyl formate (MF, CH3OCHO) decomposition pathways, MF  CH3OH + CO (1), MF  CH2O + CH2O (2), and MF  CH4 + CO2 (3), were directly measured in a shock tube using laser absorption of CO (4.6 μm), CH2O (306 nm) and CH4 (3.4 μm). Experimental conditions ranged from 1202 to 1607 K and 1.36 to 1.72 atm, with mixtures varying in initial fuel concentration from 0.1% to 3% MF diluted in argon. The decomposition rate coefficients were determined by monitoring the formation rate of each target species immediately behind the reflected shock waves and modeling the species time-histories with a detailed kinetic mechanism [12]. The three measured rate coefficients can be well-described using two-parameter Arrhenius expressions over the temperature range in the present study: k1 = 1.1 × 1013 exp(?29556/T, K) s?1, k2 = 2.6 × 1012 exp(?32052/T, K) s?1, and k3 = 4.4 × 1011 exp(?29 078/T, K) s?1, all thought to be near their high-pressure limits. Uncertainties in the k1, k2 and k3 measurements were estimated to be ±25%, ±35%, and ±40%, respectively. We believe that these are the first direct high-temperature rate measurements for MF decomposition and all are in excellent agreement with the Dooley et al. [12] mechanism. In addition, by also monitoring methanol (CH3OH) and MF concentration histories using a tunable CO2 gas laser operating at 9.67 and 9.23 μm, respectively, all the major oxygen-carrying molecules were quantitatively detected in the reaction system. An oxygen balance analysis during MF decomposition shows that the multi-wavelength laser absorption strategy used in this study was able to track more than 97% of the initial oxygen atoms in the fuel.  相似文献   

18.
The hetero-/homogeneous combustion of hydrogen/air mixtures over platinum was investigated experimentally and numerically in a channel-flow configuration at fuel-rich equivalence ratios ranging from 2 to 7, pressures up to 5 bar and wall temperatures 760–1200 K. Experiments involved in situ one-dimensional Raman measurements of major gas-phase species concentrations over the catalyst boundary layer and planar laser induced fluorescence (LIF) of the OH radical, while simulations included an elliptic 2-D model with detailed heterogeneous and homogeneous reaction mechanisms. The employed reaction schemes reproduced the measured catalytic reactant consumption, the onset of homogeneous ignition, and the post-ignition flame shapes at all examined conditions. Although below a critical pressure, which depended on temperature, the intrinsic gas-phase kinetics of hydrogen dictated lower reactivity for the fuel-rich stoichiometries when compared to fuel-lean ones, homogeneous ignition was still more favorable for the rich stoichiometries due to the lower molecular transport of the deficient oxygen reactant that resulted in modest catalytic reactant consumption over the gaseous induction zone. Above the critical pressure, the intrinsic gaseous hydrogen kinetics yielded higher reactivity for the rich stoichiometries, which resulted in vigorous gaseous combustion at pressures up to 5 bar, in contrast to lean stoichiometry studies whereby homogeneous combustion was altogether suppressed above 3 bar. Computations at fuel-rich stoichiometries in practical channel geometries indicated that homogeneous combustion was not of concern for reactor thermal management, since the larger than unity Lewis number of the deficient oxygen reactant confined the flames to the core of the channel, away from the solid walls.  相似文献   

19.
Field-induced rheological properties were studied for pure magnetic fluids (MFs) and 5% MF–cetyltrimethylammonium bromide (CTABr) emulsion for varying CTABr concentration (0–0.1 M) at different temperatures. The zero-field rheological study for 5% MF–CTABr emulsion shows maximum viscosity for 0.01 M CTABr concentrations. In-field viscosity results for 0.01 M CTABr–MF emulsion shows nearly 10 times more change in viscosity than the pure fluid, indicating the interaction between micelles and magnetic particles.  相似文献   

20.
The kinetics of the reaction of hydrogen atoms with 2,5-dimethylfuran (25DMF), a promising liquid transport biofuel, was experimentally studied in a shock tube at temperatures between 970 and 1240 K and pressures of 1.6 and 4.8 bar. The hydrogen atoms were produced by pyrolysis of ethyl iodide and monitored by atom resonance absorption spectrometry. From the hydrogen atom concentration–time profiles, overall rate coefficients for the reaction H + 25DMF  products (R1) were inferred. The results can be expressed by the Arrhenius equation k1 = 4.4 × 10?11 exp(?1180 K/T) cm?3 s?1 with an estimated uncertainty of ±30%. A significant pressure dependence was not observed. The results were analyzed in terms of statistical rate theory with molecular and transition state data from quantum chemical calculations. Three different compound methods were used to characterize the potential energy surface: CBS-QB3, CBS-APNO, and G3. It is found that reaction (R1) mainly (>75%) proceeds via an addition–elimination mechanism to yield 2-methylfuran + CH3. Kinetic parameters for the most important competing channels of the net reaction (R1) were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号