High-performance cooling is of vital importance for the cutting-edge technology of today, from nanoelectronic mechanical systems to nuclear reactors. Advances in nanotechnology have allowed the development of a new category of coolants, termed nanofluids that have the potential to enhance the thermal performance of conventional heat transfer fluids. At the present time, nanofluids are a controversial research theme, since there is yet no conclusive answer to explain the underlying physical mechanisms of heat transfer. The current study investigates experimentally the heat and mass transfer behaviour of dilute Al2O3–H2O nanofluids under turbulent natural convection—Rayleigh number of the order of 109—in a cubic Rayleigh–Bénard cell with optical access. Traditional heat transfer measurements were combined with a velocimetry method to obtain a deeper understanding of the impact of nanoparticles on the heat transfer performance of the base fluid. Particle image velocimetry was employed to quantify the resulting mean velocity field and flow structures in dilute nanofluids under natural convection, at three parallel planes inside the cubic cell. All the results were compared with that for the base fluid, i.e. deionised water. It was observed that the presence of a minute amount of Al2O3 nanoparticles in deionised water, φv =?0.00026 vol.%, considerably modifies the mass transfer behaviour of the fluid in the bulk region of turbulent Rayleigh–Bénard convection. Simultaneously, the general heat transport, as expressed by the Nusselt number, remained unaffected within the experimental uncertainty.
相似文献The present work examines the influence of magnetohydrodynamic field on natural convection phenomena inside a porous square enclosure with a pair of embedded hot circular cylinders. Numerical investigations are performed to understand the effects of interspacing distance between the embedded cylinders, Hartmann number, Rayleigh number and Darcy number on the thermal transport process and the total irreversibility generation. It is observed that the isotherm distribution is strongly affected by the presence of magnetic field although the distribution of streamlines remains independent of the strength of magnetic field. This underlines the fact that magnetic field strongly influences the heat transfer process and entropy generation characteristics. It reveals that the natural convection is suppressed in the presence of a higher magnetic field as evident from the reduction in Nusselt number. It is observed that an increase in the spacing between the cylinders increases the heat transfer rate, and moreover, the effect of the magnetic field on heat transfer is more pronounced at higher interspacing distance between the embedded cylinders. The heat transfer rate increases significantly with the increase in the permeability of the medium. The entropy generation rate is independent of the strength of applied magnetic field. Further, the contribution of the entropy generation owing to friction is found to be negligible in total irreversibility obtained at lower values of Rayleigh number irrespective of Darcy number. However, the contribution of irreversibility owing to heat transfer is found to be minimal at higher values of Rayleigh number.
相似文献This article studies buoyancy-driven natural convection of a nanofluid affected by a magnetic field within a square enclosure with an individual conductive pin fin. The effects of electromagnetic forces, thermal conductivity, and inclination angle of pin fin were investigated using non-dimensional parameters. An extensive sensitivity analysis was conducted seeking an optimal heat transfer setting. The novelty of this work lies in including different contributing factors in heat transfer analysis, rigorous analysis of design parameters, and comprehensive mathematical analysis of solution domain for optimization. Results showed that magnetic strength diminished the heat transfer efficacy, while higher relative thermal conductivity of pin fin improved it. Based on the problem settings, we also obtained the relative conductivity value in which the heat transfer is optimal. Higher sensitivity of heat transfer was, though, noticed for both magnetic strength and fin thermal conductivity in comparison to fin inclination angle. Further studies, specifically with realistic geometrical configurations and heat transfer settings, are urged to translate current findings to industrial applications.
相似文献