首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
爆震燃烧近似为等容燃烧,理论上其热循环效率高于基于等压燃烧的爆燃燃烧,在超声速推进系统中具有潜在的应用价值.通过总结超声速气流中的爆震推进理论与研究进展,分析其需要解决的关键科学与技术问题,指导未来高超声速发动机的基础研究.文章重点总结了适用于高超声速飞行的斜爆震发动机、超声速脉冲爆震冲压发动机的基础研究进展.其中对斜爆震发动机的应用模式、相关实验研究思路及方法、数值仿真现状进行了总结分析.对超声速脉冲爆震冲压发动机的基础理论研究现状和目前研究的难点进行了梳理.基于爆震燃烧的超燃冲压发动机具有推进系统自增压、燃烧效率高、推力性能好、推进效率高、燃烧室长度短、结构重量轻等优势,文章总结了该发动机当前的发展进程和最新的研究进展,并对其未来的发展方向以及存在的技术问题进行了分析.   相似文献   

2.
Transverse wave generation mechanism in rotating detonation   总被引:2,自引:0,他引:2  
Detonation engines are expected to be included in a number of aerospace thrusters in the future. Several types of detonation engines are currently under examination, including the rotating detonation engine (RDE). Although the RDE has been explored experimentally, its rotating detonation propagation mechanism is not well understood. This paper clarifies the detonation mechanism and dynamics of the RDE by 2D and 3D simulation using compressible Euler equations with a full chemical reaction mechanism of H2/O2 and H2/Air, especially from the triple-point and transverse detonation points of view. A total variation diminishing (TVD) scheme is used for the mixture of H2/Air, and an advection upwind splitting method difference vector (AUSMDV) scheme is used for the mixture of H2/O2. The use of an AUSMDV scheme provides a much clearer detonation structure than does the TVD scheme. We focus on the complex interaction mechanism of the detonation front and burned mixture gases. We found out that at this interaction point, an unreacted gas pocket appears and ignites periodically to generate transverse waves at the detonation front and maintain detonation propagation.  相似文献   

3.
Oblique detonation waves stabilized in rectangular-cross-section bent tubes   总被引:1,自引:0,他引:1  
Oblique detonation waves, which are generated by a fundamental detonation phenomenon occurring in bent tubes, may be applied to fuel combustion in high-efficiency engines such as a pulse detonation engine (PDE) and a rotating detonation engine (RDE). The present study has experimentally demonstrated that steady-state oblique detonation waves propagated stably through rectangular-cross-section bent tubes by visualizing these waves using a high-speed camera and the shadowgraph method. The oblique detonation waves were stabilized under the conditions of high initial pressure and a large curvature radius of the inside wall of the rectangular-cross-section bent tube. The geometrical shapes of the stabilized oblique detonation waves were calculated, and the results of the calculation were in good agreement with those of our experiment. Moreover, it was experimentally shown that the critical condition under which steady-state oblique detonation waves can stably propagate through the rectangular-cross-section bent tubes was the curvature radius of the inside wall of the rectangular-cross-section bent tube equivalent to 14–40 times the cell width.  相似文献   

4.
涡轮导向器对旋转爆轰波传播特性影响的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究涡轮导向器对旋转爆轰波传播特性的影响,以氢气为燃料,空气为氧化剂,在不同当量比下开展了实验研究.基于高频压力传感器及静态压力传感器的信号,详细分析了带涡轮导向器的旋转爆轰燃烧室的工作模式以及涡轮导向器对非均匀不稳定爆轰产物的影响.实验结果表明:在当量比较低时,爆轰燃烧室以快速爆燃模式工作;逐渐增大当量比,爆轰燃烧室开始以不稳定旋转爆轰模式工作;继续增大当量比,爆轰燃烧室以稳定旋转爆轰模式工作,且旋转爆轰波的传播速度和稳定性均随当量比的增大逐渐提高.爆轰波下游的斜激波与涡轮导向器相互作用,涡轮导向器对压力振荡的幅值具有明显的抑制作用,但对压力振荡频率的影响较小.随着当量比的增大,涡轮导向器上下游的静压均同时增大,经过涡轮导向器的作用,涡轮下游静压明显降低.  相似文献   

5.
Numerical simulation of a methane-oxygen rotating detonation rocket engine   总被引:1,自引:0,他引:1  
The rotating detonation engine (RDE) is an important realization of pressure gain combustion for rocket applications. The RDE system is characterized by a highly unsteady flow field, with multiple reflected pressure waves following detonation and an entrainment of partially-burnt gases in the post-detonation region. While experimental efforts have provided macroscopic properties of RDE operation, limited accessibility for optical and flow-field diagnostic equipment constrain the understanding of mechanisms that lend to wave stability, controllability, and sustainability. To this end, high-fidelity numerical simulations of a methane-oxygen rotating detonation rocket engine (RDRE) with an impinging discrete injection scheme are performed to provide detailed insight into the detonation and mixing physics and anomalous behavior within the system. Two primary detonation waves reside at a standoff distance from the base of the channel, with peak detonation heat release at approximately 10 mm from the injection plane. The high plenum pressures and micro-nozzle injector geometry contribute to fairly stiff injectors that are minimally affected by the passing detonation wave. There is no large scale circulation observed in the reactant mixing region, and the fuel distribution is asymmetric with a rich mixture attached to the inner wall of the annulus. The detonation waves’ strengths spatially fluctuate, with large variations in local wave speed and flow compression. The flow field is characterized by parasitic combustion of the fresh reactant mixture as well as post-detonation deflagration of residual gases. By the exit plane of the RDRE, approximately 95.7% of the fuel has been consumed. In this work, a detailed statistical analysis of the interaction between mixing and detonation is presented. The results highlight the merit of high-fidelity numerical studies in investigating an RDRE system and the outcomes may be used to improve its performance.  相似文献   

6.
Rotating detonation engines (RDE’s) represent a logical step from pulsed detonation engine concepts to a continuous detonation engine concept for obtaining propulsion from the high efficiency detonation cycle. The hydrogen/air and hydrogen/oxygen RDE concepts have been most extensively studied, however, being able to use hydrocarbon fuels is essential for practical RDE’s. The current paper extends our hydrogen/air model to hydrocarbon fuels with both air and pure oxygen as the oxidizer. Before beginning the RDE calculations, several detonation tube results are summarized showing the ability of the code to reproduce the correct detonation velocity and CJ properties. In addition, a calculation capturing the expected irregular detonation cell patterns of ethylene/air is also shown. To do the full range of fuels and oxidizers, we found the use of temperature-dependent thermodynamic properties to be essential, especially for hydrocarbon/oxygen mixtures. The overall results for air-breathing RDE’s with hydrocarbons ranged from 1990 to 2540 s, while in pure oxygen mode the specific impulse varied from 700 to 1070 s. These results were between 85% and 89% of the expected ideal detonation cycle results, and are in line with previous hydrogen/air estimates from our previous work. We conclude from this that hydrocarbon RDE’s are viable and that the basic flow-field patterns and behaviors are very similar to the hydrogen/air cases detailed previously.  相似文献   

7.
8.
Detonation combustors are considered promising alternatives to conventional combustors because they offer high thermal efficiency and fast combustion. However, especially for the rotating detonation combustor, the theoretical propulsive performance has not been confirmed in experimental studies because the highly unsteady flow field hinders the measurements process. To understand the involved phenomena in more detail, a reflective shuttling detonation combustor (RSDC) with a rectangular combustion chamber was developed. The interior of the chamber can easily be visualized owing to its two-dimensional quality. Utilizing the RSDC, several combustion tests with gaseous ethylene and oxygen were conducted for different values of mass flow rates and equivalence ratios. Combustion modes from the tests were classified into four types based on the fast Fourier transform (FFT) analysis of the luminous intensity of the CH* self-luminescence images captured by a high-speed camera and a band pass filter. Simultaneously, the theoretical total pressure of a conventional isobaric combustor was compared to the static pressure measured at the bottom of the RSDC chamber. For the detonation modes, the ratio between experimentally measured static pressure and the theoretical pressure varied depending on the location in the chamber owing to the distribution of the time-averaged static pressure. Furthermore, the pressure ratio of the detonation modes was up to 18% lower than that of the deflagration mode potentially owing to the flow velocity induced by the detonation waves.  相似文献   

9.
The structure and dynamics of a hydrogen-air rotating detonation engine (RDE) are described based on 100-kHz laser absorption spectroscopy measurements of water temperature at four simultaneous locations within the detonation channel. The analysis focuses on the evolution of the flowfield over a 200 ms period for three separate air mass flow rate cases. Two-dimensional unwrapped visualizations of the temperatures show a flowfield structure containing regions with the detonation front, combustion products, oblique shock, and refilling reactants, qualitatively agreeing with previous simulations and experiments. A major conclusion is that water from the combustion products is measured throughout all space and time in the RDE, including near the injector, implying the presence of performance loss processes such as burning upstream of the detonation wave or the back recirculation of combustion products with fresh fuel–air. By analyzing the elevated temperatures of the reactants during the refill process, one estimation for the mass fraction of combustion products in the reactants is as high as 20–30% on average. This product mass fraction is found to be inversely proportional to the bulk air mass flow rate and decreases as time progresses. This indicates these non-ideal processes are more significant closer to RDE ignition for poorer performing operating conditions. For the largest air mass flow case, water temperatures near the nominally cold plenum conditions likely corroborate the presence of a recirculation region on the RDE inner body. Analysis of inter- and intra-cycle temperature dynamics further support non-ideal processes occurring behind the detonation wave and during the refill process. As a whole, the data indicates that the RDE performance is better as time progresses away from ignition or for higher air mass flow rates. These data are also important for comparison with numerical models.  相似文献   

10.
Multidimensional calculations are performed to demonstrate that, by its characteristics, the pulse detonation engine (PDE) is a unique type of ramjet propulsion system, which can be used in both subsonic and supersonic aircraft. By a number of examples, it is shown that, in various thrust characteristics, such as the specific impulse, specific fuel consumption, and specific thrust, the PDE substantially exceeds ramjet engines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号