首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The propagation of curved detonation waves of gaseous explosives stabilized in rectangular-cross-section curved channels is investigated. Three types of stoichiometric test gases, C2H4 + 3O2, 2H2 + O2, and 2C2H2 + 5O2 + 7Ar, are evaluated. The ratio of the inner radius of the curved channel (ri) to the normal detonation cell width (λ) is an important factor in stabilizing curved detonation waves. The lower boundary of stabilization is around ri/λ = 23, regardless of the test gas. The stabilized curved detonation waves eventually attain a specific curved shape as they propagate through the curved channels. The specific curved shapes of stabilized curved detonation waves are approximately formulated, and the normal detonation velocity (Dn)?curvature (κ) relations are evaluated. The Dn nondimensionalized by the Chapman–Jouguet (CJ) detonation velocity (DCJ) is a function of the κ nondimensionalized by λ. The Dn/DCJ?λκ relation does not depend on the type of test gas. The propagation behavior of the stabilized curved detonation waves is controlled by the Dn/DCJ?λκ relation. Due to this propagation characteristic, the fully-developed, stabilized curved detonation waves propagate through the curved channels while maintaining a specific curved shape with a constant angular velocity. Self-similarity is seen in the front shock shapes of the stabilized curved detonation waves with the same ri/λ, regardless of the curved channel and test gas.  相似文献   

2.
This work presents the results of the large scale experiments with detonation propagating in hydrogen–air mixtures in partially confined geometries. The main aim of the work was to find the critical conditions for detonation propagation in semi-confined geometries with uniform and non-uniform hydrogen–air mixtures. The experimental facility consisted of rectangular 9 × 3 × 0.6 m channel open from the bottom, acceleration section and test section, safety vessel, gas injection and data acquisition system. Sooted plates technique was used as a witness of the detonation. The rectangular channel was placed in a 100 m3 safety vessel. For uniform hydrogen–air mixtures experiments with four different channel heights h were performed: 8, 5, 3 and 2 cm. The critical hydrogen–air mixture height h* for which the detonation may propagate in a layer is close to the 3 cm which corresponds to approximately three detonation cell sizes. For non-uniform hydrogen–air mixture with hydrogen concentration slope equal approximately ?1.1%H2/cm the critical hydrogen concentration at the top of the layer is approximately equal 26% and the mean detonation layer height is close to the 8.5 cm corresponding to the hydrogen concentration at the bottom of the layer approximately equal 16–17%.  相似文献   

3.
This study is performed to experimentally examine the fundamental burning velocity characteristics of meso-scale outwardly propagating spherical laminar flames in the range of flame radius rf approximately from 1 to 5 mm for hydrogen, methane and propane mixtures, in order to make clear a method for improving combustion of micro–meso scale flames. Macro-scale laminar flames with rf > 7 mm are also examined for comparison. The mixtures have nearly the same laminar burning velocity (SL0 = 25 cm/s) for unstretched flames and different equivalence ratios ?. The radius rf and the burning velocity SLl of meso-scale flames are estimated by using sequential schlieren images recorded under appropriate ignition conditions. It is found that SLl of hydrogen and methane premixed meso-scale flames at the same rf or the Karlovitz number Ka shows a tendency to increase with decreasing ?, whereas SLl of propane flames increases with ?. However, SLl tends to decrease with the Lewis number Le and the Markstein number Ma, irrespective of the type of fuel and ?. It also becomes clear that the optimum flame size and Ka to improve the burning velocity exist for some mixtures depending on Le and fuel types.  相似文献   

4.
Flame spreading over pure methane hydrate in a laminar boundary layer is investigated experimentally. The free stream velocity (U) was set constant at 0.4 m/s and the surface temperature of the hydrate at the ignition (Ts) was varied between ?10 and ?80 °C. Hydrate particle sizes were smaller than 0.5 mm. Two types of flame spreading were observed; “low speed flame spreading” and “high speed flame spreading”. The low speed flame spreading was observed at low temperature conditions (Ts = ?80 to ?60 °C) and temperatures in which anomalous self-preservation took place (Ts = ?30 to ?10 °C). In this case, the heat transfer from the leading flame edge to the hydrate surface plays a key role for flame spreading. The high speed flame spreading was observed when Ts = ?50 and ?40 °C. At these temperatures, the dissociation of hydrate took place and the methane gas was released from the hydrate to form a thin mixed layer of methane and air with a high concentration gradient over the hydrate. The leading flame edge spread in this premixed gas at a spread speed much higher than laminar burning velocity, mainly due to the effect of burnt gas expansion.  相似文献   

5.
The behavior of the detonation velocity near the limits is investigated. Circular tubes of diameters 65, 44 and 13 mm are used. To simulate a quasi two-dimensional rectangular geometry thin annular channels are also used. The annular channels are formed by a 1.5 m long insert of a smaller diameter tube into the larger outer diameter detonation tube. Premixed mixtures of C2H2 + 2.5O2 + 70%Ar, CH4 + 2O2 and C2H2 + 5N2O + 50%Ar are used in the present study. The high argon dilution stoichiometric C2H2 + 2.5O2 mixture has a regular cell size and piecewise laminar reaction zone and thus referred to as “stable”. The other two mixtures give highly irregular cell pattern and a turbulent reaction zone and are hence, referred to as “unstable” mixtures. Pressure transducers and optical fibers spaced 10 cm apart along the tube are used for pressure and velocity measurements. Cell size of the three mixtures studied is also determined using smoked foils in both the circular tubes and annular channels. The ratio d/λ (representing the number of cells across the tube diameter) is found to be an appropriate sensitivity parameter to characterize the mixture. The present results indicate that well within the limit, the detonation velocity is generally a few percent below the theoretical Chapman–Jouguet (CJ) value. As the limit is approached, the velocity decreases rapidly to a minimum value before the detonation fails. The narrow range of values of d/λ of the mixture where the velocity drops rapidly is found to correspond to the range of values for the onset of single headed spinning detonations. Thus we may conclude that the onset of single headed spin can be used as a criterion for defining the limits. Spinning detonations are also observed near the limits in annular channels.  相似文献   

6.
Effects of tube diameter and equivalence ratio on reaction front propagations of ethylene/oxygen mixtures in capillary tubes were experimentally analyzed using high speed cinematography. The inner diameters of the tubes investigated were 0.5, 1, 2 and 3 mm. The flame was ignited at the center of the 1.5 m long smooth tube under ambient pressure and temperature before propagated towards the exits in the opposite directions. A total of five reaction propagation scenarios, including deflagration-to-detonation transition followed by steady detonation wave transmission (DDT/C–J detonation), oscillating flame, steady deflagration, galloping detonation and quenching flame, were identified. DDT/C–J detonation mode was observed for all tubes for equivalence ratios in the vicinity of stoichiometry. The velocity for the steady detonation wave propagation was approximately Chapman–Jouguet velocity for 1, 2, and 3 mm I.D. tubes; however, a velocity deficit of 5% was found for the case in 0.5 mm I.D. tube. For leaner mixtures, an oscillating flame mode was found for tubes with diameters of 1 to 3 mm, and the reaction front travelled in a steady deflagrative flame mode with velocities around 2–3 m/s when the mixture equivalence ratio becomes even leaner. Galloping detonation wave propagation was the dominant mode for the fuel lean regime in the 0.5 mm I.D. tube. For rich mixtures beyond the detonation limits, a fast flame followed by flame quenching was observed.  相似文献   

7.
An InGaAS/GaAs heterostructure transistor utilizing a gradedInxGa1  xAs channel grown by low-pressure metal-olorganic chemical vapor deposition has been demonstrated. A negative differential resistance (NDR) phenomenon is observed. Electron mobilities are significantly improved by using the graded InGaAs channel. For the In composition varying fromx =  0.25 (at the buffer–channel interface) to x =  0.1 (at the spacer–channel interface) structure, a peak extrinsic transconductance of 24.6 S mm  1(atVDS =  6.5 V,VGSstep =   0.5 mV) and a saturation current density as high as 555 mA mm  1for a gate length of 1.5 μ m are obtained.  相似文献   

8.
In the present study, extinguishment of propane/air co-flowing diffusion flame by fine water droplets was investigated experimentally. Water droplets are generated by piezoelectric atomizers with the maximum droplets flow rate of 1500 ml/h. When the fuel injection velocity Uf is low, an attached laminar diffusion flame with a premixed flame at the base is stabilized. At some distance from the burner rim, a transition from laminar to turbulent diffusion flame occurs, and a turbulent diffusion flame is formed in the downstream region. When the fuel injector rim is thin (δ = 0.5 mm), the flame stability deteriorates with increase of the co-flowing air stream velocity Ua and the water droplets flow rate Qm. The stability mechanism can be explained by the balance of the gas velocity and the burning velocity of premixed flame formed at the base. However, when the injector rim is thick (δ = 5 mm), a recirculation zone is produced downstream of the injector rim. The dependence of the quenching distance Hq on Uf and Qm is relatively weak, and the stability diagram shows curious features. It was shown that Ua is crucially important since it determines flow residence time; if Ua < 0.4 m/s, water droplets can evaporate when they go by the recirculation zone, and the water vapor can diffuse into the recirculation zone. However, if Ua > 0.4 m/s, the water droplets should pass by the recirculation zone without sufficiently evaporated and are not so effective to extinguish the flame. The supply velocity of droplet-laden air should be low enough so that water droplets can evaporate and water vapor can diffuse into the premixed region at the base to obtain sufficient effectiveness of water droplets for fire suppression.  相似文献   

9.
Starting from the radiation transport equation for homogeneous, refractive lossy media, we derive the corresponding time-dependent multifrequency diffusion equations. Zeroth and first moments of the transport equation couple the energy density, flux and pressure tensor. The system is closed by neglecting the temporal derivative of the flux and replacing the pressure tensor by its diagonal analogue. The radiation equations are coupled to a diffusion equation for the matter temperature. We are interested in modeling heating and cooling of silica (SiO2), at possibly rapid rates. Hence, in contrast to related work, we retain the temporal derivative of the radiation field. We derive boundary conditions at a planar air–silica interface taking account of reflectivities obtained from the Fresnel relations that include absorption. The spectral dimension is discretized into a finite number of intervals leading to a system of multigroup diffusion equations. Three simulations are presented. One models cooling of a silica slab, initially at 2500 K, for 10 s. The other two are 1D and 2D simulations of irradiating silica with a CO2 laser, λ = 10.59 μm. In 2D, a laser beam (Gaussian profile, r0 = 0.5 mm for 1/e decay) shines on a disk (radius = 0.4, thickness = 0.4 cm).  相似文献   

10.
《Ultrasonics》2013,53(1):249-254
It has recently been demonstrated that it was possible to individually trap 70 μm droplets flowing within a 500 μm wide microfluidic channel by a 24 MHz single element piezo-composite focused transducer. In order to further develop this non-invasive approach as a microfluidic particle manipulation tool of high precision, the trapping force needs to be calibrated to a known force, i.e., viscous drag force arising from the fluid flow in the channel. However, few calibration studies based on fluid viscosity have been carried out with focused acoustic beams for moving objects in microfluidic environments.In this paper, the acoustic trapping force (Ftrapping) and the trap stiffness (or compliance k) are experimentally determined for a streaming droplet in a microfluidic channel. Ftrapping is calibrated to viscous drag force produced from syringe pumps. Chebyshev-windowed chirp coded excitation sequences sweeping the frequency range from 18 MHz to 30 MHz is utilized to drive the transducer, enabling the beam transmission through the channel/fluid interface for interrogating the droplets inside the channel. The minimum force (Fmin,trapping) required for initially immobilizing drifting droplets is determined as a function of pulse repetition frequency (PRF), duty factor (DTF), and input voltage amplitude (Vin) to the transducer. At PRF = 0.1 kHz and DTF = 30%, Fmin,trapping is increased from 2.2 nN for Vin = 22 Vpp to 3.8 nN for Vin = 54 Vpp. With a fixed Vin = 54 Vpp and DTF = 30%, Fmin,trapping can be varied from 3.8 nN at PRF = 0.1 kHz to 6.7 nN at PRF = 0.5 kHz. These findings indicate that both higher driving voltage and more frequent beam transmission yield stronger traps for holding droplets in motion.The stiffness k can be estimated through linear regression by measuring the trapping force (Ftrapping) corresponding to the displacement (x) of a droplet from the trap center. By plotting Ftrappingx curves for certain values of Vin (22/38/54 Vpp) at DTF = 10% and PRF = 0.1 kHz, k is measured to be 0.09, 0.14, and 0.20 nN/μm, respectively. With variable PRF from 0.1 to 0.5 kHz at Vin = 54 Vpp, k is increased from 0.20 to 0.42 nN/μm. It is shown that a higher PRF leads to a more compliant trap formation (or a stronger Ftrapping) for a given displacement x. Hence the results suggest that this acoustic trapping method has the potential as a noninvasive manipulation tool for individual moving targets in microfluidics by adjusting the transducer’s excitation parameters.  相似文献   

11.
The geometry and characteristic length of diffraction and re-initiation during a two-dimensional detonation propagation were revealed by visualization. C2H4 + 3O2 (unstable), 2C2H2 + 5O2 + 7Ar (stable) and 2C2H2 + 5O2 + 21Ar (stable) were used as the test mixtures. Experiments were performed over the deviation angle range from 30° to 150° and the initial pressure range from 15.8 to 102.3 kPa. By self-emitting photography, we confirmed that the geometry and the characteristic length of diffraction are not different among test gases, with the exception of the fan-like structure of re-initiation that occurred regardless of whether the mixture was unstable or stable. We conducted a compensative experiment by changing the deviation angle and initial pressure, and summarized the detonation diffraction by shadowgraph. At deviation angles larger than 60°, we measured the distances from the vertex of the channel corner to the point where the transverse detonation wave reflected on the under wall (= wall reflection distance) and confirmed that wall reflection distances are approximately in the range of 10–15 times the cell width, whether the mixture is unstable or stable.  相似文献   

12.
The decomposition of dimethyl ether (CH3OCH3) has been investigated behind incident shock waves in a diaphragmless shock tube using laser schlieren densitometry, LS (T = 1500–2450 K, P = 57 ± 4, 125 ± 5 and 253 ± 12 Torr). The LS density gradient profiles were simulated and excellent agreement was found between the simulations and experimental profiles. Rate coefficients for CH3OCH3  CH3O + CH3 were obtained. They showed strong fall-off, and at the lower end of the experimental temperature range are close to the low pressure limit. First order rate coefficient expressions were determined over 1500 < T < 2450 K. k57Torr = (3.10 ± 1.0) × 1079T?19.03 exp(?54417/T) s?1, k125Torr = (1.12 ± 0.3) × 1083T?19.94 exp(?55554/T) s?1and k253Torr = (1.02 ± 0.3) × 1073T?17.09 exp(?51500/T) s?1. The effect of a roaming channel for decomposition of dimethyl ether was assessed and the best agreement was obtained with 1% dissociation of DME via the roaming path.  相似文献   

13.
The aim of this study was to compare different characterization methods in order to evaluate the sonochemical efficiency of a cavitational reactor. The selected characterization methods were calorimetry and dosimetry based on potassium iodide oxidation or nitrite and nitrate ion formation. The effects of experimental parameters on physical and chemical effects of ultrasound were quantified with two transducers at a frequency of 366 kHz. The studied factors comprised temperature (16–28 °C), acoustic power (6–38 W), power density (4–61 W L?1) and reactor configuration (Dreactor 1 = 65 mm, Dreactor 2 = 102 mm). Spectrophotometry was compared to ionic chromatography as a method to quantify nitrite and nitrate ions. Spectrometry was shown to be as representative as ionic chromatography. The reaction system based on the formation of both nitrite and nitrate ions was demonstrated to be as reliable as a potassium iodide dosimeter. The representativity of calorimetry was limited since part of acoustic energy was assumed to be used in the chemical reactions observed by dosimetry. Similar sonochemical efficiencies resulted from an increase of sonified surface (Dreactor 1 = 65 mm vs. Dreactor 2 = 102 mm) coupled to a 2-time decrease in power density at a constant emitting surface. The effect of emitting-to-sonified surface area ratio on the acoustic field was apparently limited by the height of the liquid.  相似文献   

14.
PurposeTo investigate if intravoxel incoherent motion (IVIM) modeled diffusion-weighted imaging (DWI) can be linked to contrast-enhanced (CE-)MRI in liver parenchyma and liver lesions.MethodsTwenty-five patients underwent IVIM-DWI followed by multiphase CE-MRI using Gd-EOB-DTPA (n = 20) or Gd-DOTA (n = 5) concluded with IVIM-DWI. Diffusion (Dslow), microperfusion (Dfast), its fraction (ffast), wash-in-rate (Rearly) and late-enhancement-rate (Rlate) of Gd-EOB-DTPA were calculated voxel-wise for the liver. Parenchyma and lesions were segmented. Pre-contrast IVIM was compared 1) between low, medium and high Rearly for parenchyma 2) to post-contrast IVIM substantiated with simulations 3) between low and high Rlate per lesion type.ResultsDfast and ffast increased (P < 0.001) with 25.6% and 33.8% between low and high Rearly of Gd-EOB-DTPA. Dslow decreased (− 15.0%; P < 0.001) with increasing Rearly. Gd-DOTA demonstrated similar observations. ffast (+ 10%; P < 0.001) and Dfast (+ 6.6%; P < 0.001) increased after Gd-EOB-DTPA, while decreasing after Gd-DOTA (− 4.2% and − 5.7%, P < 0.001) and were confirmed by simulations. For focal nodular hyperplasia lesions (n = 5) Dfast and ffast increased (P < 0.001) with increasing Rlate, whereas for hepatocellular carcinoma (n = 4) and adenoma (n = 7) no differences were found.ConclusionMicroperfusion measured by IVIM reflects perfusion in a way resembling CE-MRI. Also IVIM separated intra- and extracellular MR contrast media. This underlines the potential of IVIM in quantitative liver imaging.  相似文献   

15.
Pt doped 122 iron arsenide SrFe1?xPtxAs2 (0 ? x ? 0.4) was successfully synthesized. The tetragonal unit-cell volume and the lattice constant a increase with increasing the Pt content, while c decreases, suggesting that the Fe ions are indeed replaced by Pt ions. By the Pt doping, the magnetic order of the parent phase is suppressed, and superconductivity emerges at approximately x = 0.15. Tc reaches the maximum of 16 K at x = 0.2. The compounds series can be a suitable subject to investigate role of the doped 5d state in the superconducting 3d Fe–As layer.  相似文献   

16.
《Solid State Ionics》2006,177(15-16):1317-1322
We have synthesized the perovskite oxides of the (Ba0.3Sr0.2La0.5)(In1−xFex)O3−δ system and measured the total electrical conductivity as a function of temperature and oxygen partial pressure. It was found that the single-phase composition region extended from x = 0.0 to x = 1.0, and that the Fe valence increased from 3.06 to 3.50 in that region. The electrical conductivity was semiconducting from x = 0.0 to x = 0.40 and metallic from x = 0.50 to x = 1.0. The total electrical conductivity at 800 °C also increased with the Fe content and achieved a maximum value of 140 (S/cm) at x = 1.0. From the dependence of the electrical conductivity on the oxygen partial pressure, we conclude that above x = 0.50, the majority carriers are holes. The estimated hole conductivity increased exponentially with the amount of Fe4+ cation present. The oxide ion conductivity was dependent on the oxygen vacancy content.  相似文献   

17.
《Optik》2013,124(16):2373-2375
We demonstrate a new device concept for wavelength division demultiplexing based on planar photonic crystal waveguides. The filtering of wavelength channels is realized by shifting the cutoff frequency of the fundamental photonic bandgap mode in consecutive sections of the waveguide. The shift is realized by modifying the size of the border holes.The proposed demultiplexer has an area equal to (16.5 μm × 6.5 μm) and thus it is verified that this structure is very small and can be integrated easily into optical integrated circuits with nanophotonic technologies. The output wavelengths of designed structure can be tuned for communication applications, around 1550 nm. The wavelengths of demultiplexer channels are λ1 = 1.590 μm, λ2 = 1.566 μm, λ3 = 1.525 μm, λ4 = 1.510 μm, λ5 = 1.484 μm, λ6 = 1.450 μm, λ7 = 1.400 μm respectively. Designs offering improvement of number of the separate wavelengths (seven), miniaturization of the structure (107.25 μm2) is our aim in this work.In our structure, we consider that the 2D triangular lattice photonic crystal is composed of air holes surrounded by dielectric. Its parameters are: radius of holes (r = 0.130 μm), lattice constant (a = 0.380 μm), and index of membrane (n = 3.181:InP). The numerical model used to simulate the structure of the demultiplexer is based on the finite difference time domain (FDTD).  相似文献   

18.
《Solid State Ionics》2006,177(7-8):691-695
Single crystals of the lithium-rich lithium manganese oxide spinels Li1 + xMn2  xO4 with x = 0.10 and 0.14 have been successfully synthesized in high-temperature molten chlorides at 1023 K. The single-crystal X-ray diffraction study confirmed the cubic Fd3¯m space group and the lattice parameters of a = 8.2401(9) Å for x = 0.10 and a = 8.2273(10) Å for x = 0.14 at 300 K, respectively. The crystal structures have been refined to the conventional values R = 3.7% for x = 0.10 and R = 3.1% for x = 0.14, respectively. Low-temperature single-crystal X-ray diffraction experiments revealed that these single crystal samples showed no phase transition between 100 and 300 K. The electron-density distribution images in these compounds by the single-crystal MEM analysis clearly showed strong covalent bonding features between the Mn and O atoms due to the Mn–3d and O–2p interaction.  相似文献   

19.
In a point contact NS junction, perfect Andreev reflection occurs over a range of voltages equal to the superconducting energy gap, producing an excess current of Iexc =  (4 / 3)(2 eΔ / h). If the superconductor has a finite width, rather than the infinite width of the point contact, one cannot neglect superfluid flow inside the superconducting contact. The energy range available for perfect Andreev reflections then becomes larger than the superconducting gap, since superfluid flow alters the dispersion relation inside the finite width superconductor. We find a maximum excess current of approximately (7 / 3)(2 eΔ / h) when the width of the superconductor is approximately 7 / 3 times the width of the normal metal.  相似文献   

20.
Temperature-programmed-desorption (TPD) spectra and isothermal desorption rates of D2 molecules from a Si(100) surface have been calculated to reproduce experimental β1, A-TPD spectra and isothermal desorption rate curves. In the diffusion-promoted-desorption (DPD) mechanism, hydrogen desorption from the Si(100) (2 × 1) surfaces takes place via D atom diffusion from doubly-occupied Si dimers (DODs) to their adjacent unoccupied Si dimers (UODs). Taking a clustering interaction among DODs into consideration, coverages θDU of desorption sites consisting of a pair of a DOD and UOD are evaluated by a Monte Carlo (MC) method. The TPD spectra for the β1, A peak are obtained by numerically integrating the desorption rate equation R = νA exp(? Ed, A / kBT)θDU, where νA is the pre-exponential factor and Ed, A is the desorption barrier. The TPD spectra calculated for Ed, A = 1. 6 eV and νA = 2.7 × 109 /s are found to be in good agreement with the experimental TPD data for a wide coverage range from 0.01 to 0.74 ML. Namely, the deviation from first-order kinetics observed in the coverage dependent TPD spectra as well as in the isothermal desorption rate curves can be reproduced by the model simulations. This success in reproducing both the experimental TPD data and the very low desorption barrier validates the proposed DPD mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号