首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pure heterogeneous and the coupled hetero-/homogeneous combustion of fuel-lean propane/air mixtures over platinum have been investigated at pressures 1 bar  p  7 bar, fuel-to-air equivalence ratios 0.23  φ  0.43, and catalytic wall temperatures 723 K  Tw  1286 K. Experiments were performed in an optically accessible catalytic channel-flow reactor and involved 1-D Raman measurements of major gas-phase species concentrations across the reactor boundary layer for the assessment of catalytic fuel conversion and planar laser induced fluorescence (LIF) of the OH radical for the determination of homogeneous ignition. Numerical predictions were carried out with a 2-D elliptic CFD code that included a one-step catalytic reaction for the total oxidation of propane on Pt, an elementary C3 gas-phase chemical reaction mechanism, and detailed transport. A global catalytic reaction step valid over the entire pressure–temperature-equivalence ratio parameter range has been established, which revealed a p0.75 dependence of the catalytic reactivity on pressure. The aforementioned global catalytic step was further coupled to a detailed gas-phase reaction mechanism in order to simulate homogeneous ignition characteristics in the channel-flow reactor. The predictions reproduced within 10% the measured homogeneous ignition distances at pressures p  5 bar, while at p = 7 bar the simulations overpredicted the measurements by 19%. The overall model performance suggests that the employed hetero-/homogeneous chemical reaction schemes are suitable for the design of propane-fueled catalytic microreactors.  相似文献   

2.
The hetero-/homogeneous combustion of fuel-lean hydrogen/air premixtures over platinum was investigated experimentally and numerically in the pressure range 1 bar  p  10 bar. Experiments were carried out in an optically accessible channel-flow catalytic reactor and included planar laser induced fluorescence (LIF) of the OH radical for the assessment of homogeneous (gas-phase) ignition, and 1-D Raman measurements of major gas-phase species concentrations for the evaluation of the heterogeneous (catalytic) processes. Simulations were performed with a full-elliptic 2-D model that included detailed heterogeneous and homogeneous chemical reaction schemes. The predictions reproduced the measured catalytic hydrogen consumption, the onset of homogeneous ignition at pressures of up to 3 bar and the diminishing gas-phase combustion at p  4 bar. The suppression of gaseous combustion at elevated pressures bears the combined effects of the intrinsic homogeneous hydrogen kinetics and of the hetero/homogeneous chemistry coupling via the catalytically produced water over the gaseous induction zone. Transport effects, associated with the large diffusivity of hydrogen, have a smaller impact on the limiting pressure above which gaseous combustion is suppressed. It is shown that for practical reactor geometrical confinements, homogeneous combustion is still largely suppressed at p  4 bar even for inlet and wall temperatures as high as 723 and 1250 K, respectively. The lack of appreciable gaseous combustion at elevated pressures is of concern for the reactor thermal management since homogeneous combustion moderates the superadiabatic surface temperatures attained during the heterogeneous combustion of hydrogen.  相似文献   

3.
The hetero-/homogeneous combustion of fuel-lean ethane/air mixtures over platinum was investigated experimentally and numerically at pressures of 1–14 bar, equivalence ratios of 0.1–0.5, and surface temperatures ranging from 700 to 1300 K. Experiments were carried out in an optically accessible channel-flow reactor and included in situ 1-D Raman measurements of major gas phase species concentrations across the channel boundary layer for determining the catalytic reactivity, and planar laser induced fluorescence (LIF) of the OH radical for assessing homogeneous ignition. Numerical simulations were performed with a 2-D CFD code with detailed hetero-/homogeneous C2 kinetic mechanisms and transport. An appropriately amended heterogeneous reaction scheme has been proposed, which captured the increase of ethane catalytic reactivity with rising pressure. This scheme, when coupled to a gas-phase reaction mechanism, reproduced the combustion processes over the reactor extent whereby both heterogeneous and homogeneous reactions were significant and moreover, provided good agreement to the measured homogeneous ignition locations. The validated hetero-/homogeneous kinetic schemes were suitable for modeling the catalytic combustion of ethane at elevated pressures and temperatures relevant to either microreactors or large-scale gas turbine reactors in power generation systems. It was further shown that the pressure dependence of the ethane catalytic reactivity was substantially stronger compared to that of methane, at temperatures up to 1000 K. Implications for high-pressure catalytic combustion of natural gas were finally drawn.  相似文献   

4.
The hetero-/homogeneous combustion of fuel-lean CO/H2/O2/N2 mixtures over platinum is investigated at pressures up to 5 bar, inlet temperatures (TIN) up to 874 K, and a constant CO:H2 molar ratio of 2:1. Experiments are performed in an optically accessible channel-flow catalytic reactor and involve planar laser induced fluorescence (LIF) of the OH radical for the assessment of homogeneous (gas-phase) ignition and 1-D Raman measurements of major gas-phase species concentrations over the catalyst boundary layer for the evaluation of the heterogeneous (catalytic) processes. Simulations are carried out with an elliptic 2-D model that includes detailed heterogeneous and homogeneous chemical reaction schemes. The predictions reproduce the Raman-measured catalytic CO and H2 consumption, and it is further shown that for wall temperatures in the range 975 ? Tw ? 1165 K the heterogeneous pathways of CO and H2 are largely decoupled. However, for wall temperatures below a limiting value of 710–720 K and for the range of pressures and mixture preheats investigated, CO(s) blockage of the surface inhibits the catalytic conversion of both fuel components. The homogeneous ignition distance is well-reproduced by the model for TIN > 426 K, but it is modestly overpredicted at lower TIN. Possible reasons for these modest differences can be the values of third body efficiencies in the gas-phase reaction mechanism. The sensitivity of homogeneous ignition distance on the catalytic reactions is weak, while the H2/O2 subset of the CO/H2/O2 gaseous reaction mechanism controls the onset of homogeneous ignition. Pure hydrogen hetero-/homogeneous combustion results in flames established very close to the catalytic walls. However, in the presence of CO the gaseous combustion of hydrogen extends well-inside the channel core, thus allowing homogeneous consumption of H2 at considerably shorter reactor lengths. Finally, implications of the above findings for the design of syngas-based catalytic reactors for power generation systems are discussed.  相似文献   

5.
6.
The turbulent catalytic combustion of a fuel-lean hydrogen/air mixture (equivalence ratio ? = 0.24) was investigated by means of three-dimensional direct numerical simulation (DNS) in a platinum-coated plane channel with a prescribed wall temperature of 960 K and an incoming Reynolds number, based on the channel height, of 5700. Heat transfer from the hot catalytic walls laminarized the flow, as manifested by the progressive suppression of the high vorticity components of the flow aligned parallel to the channel walls at increasing streamwise distances. The impact of turbulence suppression on the mass transfer towards or away from the catalytic wall was subsequently assessed. Far upstream where high turbulence fluctuations persisted, the instantaneous local transverse gradient of the limiting hydrogen reactant (a quantity proportional to the catalytic reaction rate) as well as the instantaneous hydrogen concentration at the wall exhibited strong fluctuations by up to 300%, a result of finite-rate chemistry induced by the high inrush events towards the catalytic walls. Fourier analysis of the reaction rate fluctuations yielded peak frequencies of less than 1 kHz, values comparable to the thermal response frequencies of typical materials in commercial catalytic geometries. This has direct implications on the thermal stress of the reactor walls as well as on the decoupling between flow and solid thermal modeling currently used in practical catalytic reactors. Far downstream, the dampening of turbulence resulted in weaker hydrogen concentration fluctuations with nearly symmetric distributions. Finally, computed transverse turbulent species fluxes indicated inherent weaknesses of near-wall turbulence models in describing turbulent transport of species with disparate molecular diffusivities.  相似文献   

7.
The start-up of platinum-coated, hydrogen-fuelled planar channels with heights of 1 mm is investigated numerically using 2-D transient simulations with detailed hetero-/homogeneous chemistry, heat conduction in the solid wall and surface radiation heat transfer. Simulations encompass pressures of 1 and 5 bar and fuel-lean H2/air equivalence ratios of 0.10 to 0.28. Catalytic ignition is inhibited by rising pressure and increasing hydrogen concentration. However, at temperatures above the catalytic ignition temperature Tign, the dependencies of the heterogeneous reactivity reverse, showing a positive order ~1.5 with respect to hydrogen concentration and an overall positive pressure order of ~0.97. Despite the longer catalytic ignition times for the larger equivalence ratios, the times required to reach steady state are shorter at larger stoichiometries due to their enhanced catalytic reactivity at T > Tign and the resulting higher exothermicity. Following catalytic ignition, the wall temperatures eventually attain superadiabatic values due to the diffusional imbalance of hydrogen. Homogeneous chemistry considerably moderates the superadiabatic surface temperatures at 5 bar, as the gaseous combustion zone extends parallel to the channel wall and thus shields the catalyst surface from the hydrogen-rich channel core. Furthermore, gas-phase chemistry reduces the steady-state times and substantially increases the hydrogen conversion.  相似文献   

8.
This work reports on an experimental and modeling study on the low-temperature heat release (LTHR) characteristics for three RON 90 binary blends (n-heptane blended with isooctane, toluene and ethanol) in a Cooperative Fuel Research (CFR) engine at lean and stoichiometric conditions that are representative of homogeneous charge compression ignition (HCCI) and spark-ignition (SI) end-gas combustion conditions, respectively. An analysis of the end-gas temperature-pressure (T-P) trajectories was performed to identify the intake conditions leading to similar T-P trajectories between the two lambdas for each fuel blend. A heat release analysis was then conducted for the identified cases, where fuel-to-fuel differences in LTHR were identified and found to be sensitive to the operating condition. Simulations were conducted for these cases using a recently updated chemical kinetic model and a 0-D engine model, where good qualitative and reasonable quantitative agreements in LTHR were obtained. Sensitivity analysis was also performed directly on the rates of LTHR, to understand the controlling chemical reactions of LTHR, providing further insights into the fuel-to-fuel differences. The results demonstrate the significant promoting effect of n-heptane on LTHR rates, while inhibiting effects were seen for ethanol and toluene. Also highlighted was the importance of H-atom abstraction reactions from the chemistry of each fuel component, which could lead to contradictory fuel behavior depending on the locations of the H site of the abstraction reaction due to the different ensuing pathways for the primary fuel radicals.  相似文献   

9.
The paper presents data on the control of combustion and detonation in CO and H2 mixtures with air by small additives. The dependence of the kinetics of combustion and detonation characteristics on the initial mixture composition observed experimentally is in agreement with the predictions of theory taking into account the special features of reaction chains of the combustion of carbon monoxide in the presence of hydrogen-containing impurities. Works ignoring the chain character of the combustion of H2 and CO are critically reviewed.  相似文献   

10.
11.
A numerical simulation of the ignition and combustion of hydrocarbon-hydrogen-air homogeneous and heterogeneous (gas-drop) ternary mixtures for three hydrocarbon fuels (n-heptane, n-decane, and n-dodecane) is for the first time performed. The simulation is carried out based on a fully validated detailed kinetic mechanism of the oxidation of n-dodecane, which includes the mechanisms of the oxidation of n-decane, n-heptane, and hydrogen as constituent parts. It is demonstrated that the addition of hydrogen to a homogeneous or heterogeneous hydrocarbon-air mixture increases the total ignition delay time at temperatures below 1050 K, i.e., hydrogen acts as an ignition inhibitor. At low temperatures, even ternary mixtures with a very high hydrogen concentration show multistage ignition, with the temperature dependence of the ignition delay time exhibiting a negative temperature coefficient region. Conversely, the addition of hydrogen to homogeneous and heterogeneous hydrocarbon-air mixtures at temperatures above 1050 K reduces the total ignition delay time, i.e., hydrogen acts as an autoignition promoter. These effects should be kept in mind when discussing the prospects for the practical use of hydrogen-containing fuel mixtures, as well as in solving the problems of fire and explosion safety.  相似文献   

12.
Absorptance measurements of selected resolved spectral lines in the OH 2Σ+ ? 2Π (0, 0) band near 3100 Å have been used to compute ground electronic state hydroxyl radical concentrations and rotational temperatures for the high-intensity continuous combustion of hydrogen/air and methane/air mixtures in a jet-stirred reactor. For mass throughput rates between 2 and 3 x 10?2gm/cm3 sec and fuel/air equivalence ratios, Φfuel/air, varying from 0.57 to 1.32, maximum (OH) of 1 to 2 x 1016cm?3 occurred near Φfuel/air = 0.85 Ground-state rotational temperatures were slightly greater than gas kinetic temperatures determined from thermocouple measurements uncorrected for heat losses. An estimate of the vibrational temperature implied that the ground electronic state vibrational and rotational degrees of freedom were also in equilibrium. Values deduced for the collisional broadening parameter, a, agreed favorably with previous results.  相似文献   

13.
14.
Spray, ignition and combustion characteristics of biodiesel fuels were investigated under a simulated diesel-engine condition (885 K, 4 MPa) in a constant volume combustion vessel. Two biodiesel fuels originated from palm oil and used cooking oil were used while JIS#2 used as the base fuel. Spray images were taken by a high speed video camera by using Mie-scattering method to measure liquid phase penetration and liquid length. An image intensifier combined with OH filter was used to obtain OH radical image near 313 nm. Ignition and combustion characteristics were studied by OH radical images. Biodiesel fuels give appreciably longer liquid lengths and shorter ignition delays. At low injection pressure (100 MPa), biodiesel fuels give shorter lift-off lengths than those of diesel. While at high injection pressure (200 MPa), the lift-off length of biodiesel fuel originated palm oil gives the shortest value and that of biodiesel from used cooking oil gives the longest one. Air entrainment upstream of lift-off length of three fuels was estimated and compared to soot formation distance. This study reveals that the viscosity and ignition quality of biodiesel fuel have great influences on jet flame structure and soot formation tendency.  相似文献   

15.
The partial oxidation of natural gas in HCCI engines in terms of a polygeneration process could be a promising technology to flexibly produce useful chemicals, heat, and work, depending on demand. Because natural gas is relatively inert, high intake temperatures or compression ratios are required to initiate its conversion which can result in a lower lifetime of the engine. Alternatively, small amounts of more reactive species such as ozone can be added to the initial mixture to provide radicals at more moderate conditions and initiate the main ignition. In this study, plug-flow reactor experiments are performed to assess the influence of ozone on the fuel conversion and product formation during the partial oxidation of methane and natural gas. Experiments are performed in the temperature range of 373 K to 973 K at 4 bar and equivalence ratios of 2. Molecular-beam mass spectrometry coupled with electron ionization is used as analytical technique to detect the mixture composition at the outlet of the reactor. The results show that even very small amounts of ozone can help to shift the conversion onset to much lower temperatures and increase the yields of useful chemicals. The data can further be used to improve reaction mechanisms describing the conversion of hydrocarbons in the presence of ozone. A literature ozone reaction mechanism has been implemented in two recent hydrocarbon mechanisms and the results of simulations using these mechanisms are compared to the experimental data with respect to the low-temperature intermediates which influence ignition. Predictions differ substantially from the experimental results identifying starting points for further investigations. The speciation data provided in this work contribute to extending the reaction kinetics of ozone assisted fuel conversion to higher pressure.  相似文献   

16.
The homogeneous ignition of CH4/air, CH4/O2/H2O/N2, and CH4/O2/CO2/N2 mixtures over platinum was investigated experimentally and numerically at pressures 4 bar p 16 bar, temperatures 1120 K T 1420 K, and fuel-to-oxygen equivalence ratios 0.30 0.40. Experiments have been performed in an optically accessible catalytic channel-flow reactor and included planar laser induced fluorescence (LIF) of the OH radical for the determination of homogeneous (gas-phase) ignition and one-dimensional Raman measurements of major species concentrations across the reactor boundary layer for the assessment of the heterogeneous (catalytic) processes preceding homogeneous ignition. Numerical predictions were carried out with a 2D elliptic CFD code that included elementary heterogeneous and homogeneous chemical reaction schemes and detailed transport. The employed heterogeneous reaction scheme accurately captured the catalytic methane conversion upstream of the gaseous combustion zone. Two well-known gas-phase reaction mechanisms were tested for their capacity to reproduce measured homogeneous ignition characteristics. There were substantial differences in the performance of the two schemes, which were ascribed to their ability to correctly capture the pT parameter range of the self-inhibited ignition behavior of methane. Comparisons between measured and predicted homogeneous ignition distances have led to the validation of a gaseous reaction scheme at 6 bar p 16 bar, a pressure range of particular interest to gas-turbine catalytically stabilized combustion (CST) applications. The presence of heterogeneously produced water chemically promoted the onset of homogeneous ignition. Experiments and predictions with CH4/O2/H2O/N2 mixtures containing 57% per volume H2O have shown that the validated gaseous scheme was able to capture the chemical impact of water in the induction zone. Experiments with CO2 addition (30% per volume) were in good agreement with the numerical simulations and have indicated that CO2 had only a minor chemical impact on homogeneous ignition.  相似文献   

17.
Characteristics of microscale hydrogen diffusion flames produced from sub-millimeter diameter (d = 0.2 and 0.48 mm) tubes are investigated using non-intrusive UV Raman scattering coupled with LIPF technique. Simultaneous, temporally and spatially resolved point measurements of temperature, major species concentrations (O2, N2, H2O, and H2), and absolute hydroxyl radical concentration (OH) are made in the microflames for the first time. The probe volume is 0.02 × 0.04 × 0.04 mm3. In addition, photographs and 2-D OH imaging techniques are employed to illustrate the flame shapes and reaction zones. Several important features are identified from the detailed measurements of microflames. Qualitative 2-D OH imaging indicates that a spherical flame is formed with a radius of about 1 mm as the tube diameter is reduced to 0.2 mm. Raman/LIPF measurements show that the coupled effect of ambient air leakage and pre-heating enhanced thermal diffusion of H2 leads to lean-burn conditions for the flame. The calculated characteristic features and properties indicate that the buoyancy effect is minor while the flames are in the convection–diffusion controlled regime because of low Peclet number. Also, the effect of Peclet number on the flame shape is minor as the flame is in the convection–diffusion controlled regime. Comparisons between the predicted and measured data indicate that the trends of temperature, major species, and OH distributions are properly modeled. However, the code does not properly predict the air entrainment and pre-heating enhanced thermal-diffusive effects. Therefore, thermal diffusion for light species and different combustion models might need to be considered in the simulation of microflame structure.  相似文献   

18.
19.
The autoignition behaviour of hydrogen in a turbulent co-flow of heated air at atmospheric pressures was examined experimentally. Turbulent flows of air, with temperatures up to 1015 K and velocities up to 35 m/s, were set up in an optically accessible tube of circular cross-section. The fuel, pure or diluted with nitrogen, was continuously injected along the centreline of the tube, with velocities equal to or larger than those of the air, and temperatures that were lower. The fuel mixing patterns hence obtained were akin to diffusion from a point source or to an axisymmetric jet within a co-flow. For a relatively wide range of temperatures and velocities, a statistically steady condition of randomly occurring autoignition kernels was observed, whose axial location was measured by hydroxyl radical chemiluminescence. The probability density function of autoignition location was sharp enough to allow the accurate determination of a minimum autoignition length and smooth enough to allow the mean and variance to be calculated. It was found that both autoignition lengths increased with the air velocity and decreased with the air temperature, as expected. An estimate of the residence time up to autoignition showed that the autoignition delay times increased with the air velocity for the same temperature, suggesting a delaying effect of the turbulence on autoignition. The connection between these findings and previous experimental and direct numerical simulation studies is discussed.  相似文献   

20.
The sound power level produced by an air jet impinging upon a flat solid boundary is investigated. Measurements are recorded for nozzle diameters and exit velocities in the ranges 0·75 in < D < 1·5 in and 270 ft/s <U? < 700 ft/s. The effect of varying the nozzle to plate spacing is investigated for plates normal to and inclined to the jet axis.At low velocities and large nozzle diameters the sound power level was found to increase continuously as the nozzle to plate spacing decreased, the maximum increase being 7 dB above that of the free jet. Under certain conditions, usually small nozzle diameter and high velocities, a maximum in sound power level was observed in the nozzle to plate spacing range, increases of 27 dB above that of the free jet levels being recorded and a distinct tonal character being detected.The reasons for this phenomenon cannot be fully explained, but it is likely that this can be avoided by inclining the plate to the jet axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号