首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species concentration time-histories were measured during oxidation for the large, normal-alkane, diesel-surrogate component n-hexadecane. Measurements were performed behind reflected shock waves in an aerosol shock tube, which allowed for high fuel loading without pre-test heating and possible decomposition and oxidation. Experiments were conducted using near-stoichiometric mixtures of n-hexadecane and 4% oxygen in argon at temperatures of 1165–1352 K and pressures near 2 atm. Concentration time-histories were recorded for five species: C2H4, CH4, OH, CO2, and H2O. Methane was monitored using DFG laser absorption near 3.4 μm; OH was monitored using UV laser absorption at 306.5 nm; C2H4 was monitored using a CO2 gas laser at 10.5 μm; and CO2 and H2O were monitored using tunable DFB diode laser absorption at 2.7 and 2.5 μm, respectively. These time-histories provide critically needed kinetic targets to test and refine large reaction mechanisms. Comparisons were made with the predictions of two diesel-surrogate reaction mechanisms (Westbrook et al. [1]; Ranzi et al. [9]) that include n-hexadecane, and areas of needed improvement in the mechanisms were identified. Comparisons of the intermediate product yields of ethylene for n-hexadecane with those found for other smaller n-alkanes, show that an n-hexadecane mechanism derived from a simple hierarchical extrapolation from a smaller n-alkane mechanism does not properly simulate the experimental measurements.  相似文献   

2.
利用激光质谱法,通过分析丙酮和丁酮的多光子电离飞行时间质谱,对其532nm多光子电离机制进行了研究. 结果发现丙酮相干吸收若干光子跃迁到高能超激发态,再继续吸收光子产生各种碎片离子,而丁酮先解离后电离. 两质谱中都有质荷比为4、6、8的离子,原则上是高价离子,但在相似条件下未见相关报道,因此对离子出险原因及确认尚待进一步研究. 实验中丁酮发生异构现象,其异构体电离解离出较强的C2H3O+(m/e=43).丙酮没有相关离子产生.  相似文献   

3.
This work reports an experimental and kinetic modeling investigation on the laminar flame propagation of acetone and 2-butanone at normal to high pressures. The experiments were performed in a high-pressure constant-volume cylindrical combustion vessel at 1–10 atm, 423 K and equivalence ratios of 0.7–1.5. A kinetic model of acetone and 2-butanone combustion was developed from our recent pentanone model [Li et al., Proc. Combust. Inst. 38 (2021) 2135–2142] and validated against experimental data in this work and in literature. Together with our recently reported data of 3-pentanone, remarkable fuel molecular structure effects were observed in the laminar flame propagation of the three C3C5 ketones. The laminar burning velocity increases in the order of acetone, 2-butanone and 3-pentanone, while the pressure effects in laminar burning velocity reduces in the same order. Modeling analysis was performed to provide insight into the key pathways in flames of acetone and 2-butanone. The differences in radical pools are concluded to be responsible for the observed fuel molecular structure effects on laminar burning velocity. The favored formation of methyl in acetone flames inhibits its reactivity and leads to the slowest laminar flame propagation, while the easiest formation of ethyl in 3-pentanone flames results in the highest reactivity and fastest laminar flame propagation. Furthermore, the LBVs of acetone and 3-pentanone exhibit the strongest and weakest pressure effects respectively, which can be attributed to the influence of fuel molecular structures through two crucial pressure-dependent reactions CH3 + H (+M) = CH4 (+M) and C2H4 + H (+M) = C2H5 (+M).  相似文献   

4.
A continuous-wave laser absorption diagnostic, based on the infrared CO2 bands near 4.2 and 2.7 μm, was developed for sensitive temperature and concentration measurements in high-temperature gas systems using fixed-wavelength methods. Transitions in the respective R-branches of both the fundamental υ 3 band (~2,350 cm?1) and combination υ 1 + υ 3 band (~3,610 cm?1) were chosen based on absorption line-strength, spectral isolation, and temperature sensitivity. The R(76) line near 2,390.52 cm?1 was selected for sensitive CO2 concentration measurements, and a detection limit of <5 ppm was achieved in shock tube kinetics experiments (~1,300 K). A cross-band, two-line thermometry technique was also established utilizing the R(96) line near 2,395.14 cm?1, paired with the R(28) line near 3,633.08 cm?1. This combination yields high temperature sensitivity (ΔE” = 3,305 cm-1) and expanded range compared with previous intra-band CO2 sensors. Thermometry performance was validated in a shock tube over a range of temperatures (600–1,800 K) important for combustion. Measured temperature accuracy was demonstrated to be better than 1 % over the entire range of conditions, with a standard error of ~0.5 % and µs temporal resolution.  相似文献   

5.
6.
7.
Oxymethylene ethers (OMEs) form an interesting family of synthetic compounds to replace fossil fuels. This alternative liquid energy carrier can contribute to a circular carbon economy when produced via carbon capture and utilization technology using renewable electricity. Despite the potential to reduce greenhouse gas and particulate matter emissions and their ideal ignition characteristics, little is known about the thermal decomposition behavior of OMEs. In this work, new insights are obtained in the pyrolysis chemistry of oxymethylene ether-2 (OME-2) and the role of carbenes by performing experiments at high temperatures (> 850 K) in a tubular quartz reactor. The used continuous bench-scale pyrolysis unit has a dedicated on-line analysis section including comprehensive two-dimensional gas chromatography (GC × GC) coupled with flame ionization detection (FID) and mass spectroscopy (MS) to identify and quantify the full product spectrum over the complete temperature range. The reactor temperature was varied between 850 and 1150 K at a fixed pressure of 0.15 MPa and residence times of 400 to 850 ms. The major products are dimethoxymethane, formaldehyde, methyl formate, methane, CO2, CO and H2. Minor intermediate compounds comprise dimethyl ether, formic anhydride, formic acid, methoxymethyl formate and methoxymethanol. The yields of compounds with carbon-carbon bonds are low since no such bonds originally occur in OME-2. Precursors of aromatic compounds and soot particles are absent in the reactor effluent. The experimental results are simulated with a new first principles-based kinetic model for pyrolysis and combustion of OME-2. This model can predict the experimental trends of major products on average within the experimental uncertainty margin of ± 10% relative for major product species. A reaction pathway and sensitivity analysis are presented to highlight the importance of the carbenes for initiation of the radical chemistry under pyrolysis conditions.  相似文献   

8.
Scanning tunneling microscopy and spectroscopy are used to determine the shape and electronic structure of organoboron nanoparticles formed during high-temperature pyrolysis of C2B10H12 carborane vapor. Spherical, lenticular, and shapeless nanoparticles are found. Spherical and lenticular particles exhibit metallic conduction, whereas shapeless particles show semiconductor properties.  相似文献   

9.
Time-dependent temperatures and compositions within individual fiber-supported droplets initially from about 2–3 mm in diameter were investigated. In the experiments, droplets were composed of mixtures of 1-propanol and acetone. The droplets evaporated in room air, where the air was heated by placing an electrically heated coil underneath the droplets. The experiments employed thin optical fibers to carry light from a UV–vis light source into and out of a droplet. The time-dependent UV absorption spectrum of the liquid between the fiber ends was measured using a spectrometer coupled to one of the fibers. This spectrum yielded real-time information on the composition of the liquid. Droplet temperatures were simultaneously measured using a thermocouple that was immersed into the liquid. Results demonstrate that droplet evaporation follows a multi-stage process and that acetone is preferentially gasified from a droplet.  相似文献   

10.
Andreone  A.  Cassinese  A.  Cantoni  C.  Di Chiara  A.  Miletto Granozio  F.  Salluzzo  M.  Vaglio  R. 《Il Nuovo Cimento D》1994,16(10):1909-1915
Il Nuovo Cimento D - Accurate measurements of the magnetic penetration depth λ of n-doped (Nd1.85Ce0.15CuO4−δ) and p-doped (YBa2Cu3O7−δ) high-temperature superconductors...  相似文献   

11.
12.
13.
14.
The first objective of this work was to compare the pyrolysis behavior of coals coming from different geographic locations (South Africa, South America, Europe, Australia, and North America). This preliminary study was limited to the kinetics of methane and tar evolution, with data on additional species to be reported in a separate publication. The second objective was to examine the possible relationship between tar and methane evolution during pyrolysis. This study was done by employing a thermogravimetric analyzer coupled with a Fourier-transform infrared spectrometer (TG-FTIR). The evolution curves for 35 coals of different elemental compositions were measured at three different heating rates (10, 30, and 100 K/min). Pyrolysis kinetics were described using a simple first-order reaction model. The technique, first proposed by Kissinger, is based on the variation of the temperature at which a volatile species evolution rate is a maximum (Tmax) as a function of the heating rate. The TG-FTIR data for tar evolution reveal a generally consistent behavior for coals from different parts of the world, showing increasing activation energies with increasing coal rank. The same correlation is also true for methane, although the slope of the activation energy versus carbon content curve is rather flat, at least up to about 90% carbon content. The values of activation energies for methane evolution were found to be lower in the case of the Argonne coals, as compared with the non-US coals. A study of the temperatures at which the evolution of methane and tar begins (Tini), and the temperatures at which the evolution rates reach a maximum (Tmax), reveals a correlation between the Tini for methane and Tmax for tar. This may be due to the fact that both tar and methane evolve as a result of similar reactions involved in the breakup and recombination of the coal macromolecular network.  相似文献   

15.
The transformation and fate of sulphur (S) in a spent tyre pyrolysis char during CO2 gasification were studied by following the S species and contents using X-ray photoelectron spectroscopy (XPS). The spent tyre pyrolysis char (particle size fraction ≤150 µm), without and with 1 M HCl acid washing to remove inorganic S, were gasified in a fixed bed reactor. The effect of temperature (850, 950, 1050 °C), reaction time (1, 2, 3, 6 h) and CO2 concentration (33.3, 50.0, 66.7 vol% in N2) on the S species in the char samples were investigated. The main S species in the spent tyre pyrolysis char were ZnS and aliphatic sulphide. After CO2 gasification, aliphatic sulphide, thiophene, sulphoxide and sulphone became the dominant organic S while ZnS and CaSO4 were the main inorganic S. The percentage of total S increased with increasing gasification temperature, time and CO2 concentration. The content of organic S increased with increasing gasification temperature and time, while, the content of inorganic S decreased. Increasing CO2 concentration had negligible effect on the content of organic S but led to significant reduction in the content of inorganic S since ZnS reacted with CO2 to produce ZnO and SO2. Aliphatic sulphide, sulphoxide and sulphone were shown to have transformed to more stable thiophene. ZnS decomposed to release SX at > 900 °C while CaSO4 reacted with CO and carbon to produce COS. Both SX and COS reacted with the organic matrix in the char to form sulphoxide and sulphone.  相似文献   

16.
Data concerning the phenomenology and nature of some grain boundary (GB) processes — dynamic recovery at GB and GB sliding during high temperature deformation of polycrystals are given. On the basis of these data a new model of superplasticity (SP) is discussed. The possibility of realization of SP at relatively low temperatures is shown.  相似文献   

17.
O2/CO2 combustion has attracted considerable attention as a promising technology for CO2 capture. Using biomass for fuel is considered carbon neutral, and O2/CO2 biomass combustion can mitigate the deleterious environmental effect of greenhouse. In this study, the effect of CO2, the main component gas in O2/CO2 combustion, on the pyrolysis characteristics of biomass is investigated. Cellulose, lignin, and metal-depleted lignin pyrolysis experiments were performed using a thermobalance. Information on the surface chemistry of the chars was obtained by Fourier transform infrared (FTIR) spectroscopy to investigate changes in the surface chemistry during pyrolysis under different surrounding gasses. When the temperature increased to 1073 K at heating rate of 1 K s?1, the char yield of lignin in the presence of CO2 increased by about 10% compared with that under Ar. However, for cellulose and metal-depleted lignin, no significant difference appeared between pyrolysis under CO2 and that under Ar. FT-IR showed that a strong peak corresponding to carbonate ions appeared in the char derived from lignin under CO2. Therefore, salts such as Na2CO3 or K2CO3 formed during the lignin pyrolysis under CO2. At around 1650–1770 cm?1, a significant difference appeared in the FTIR spectra of chars formed under CO2 and those formed under Ar. C=O groups not associated with an aromatic ring were found only in chars formed under CO2. It was suggested that these salts affected the char formation reaction, in that the char formed during lignin pyrolysis under CO2 had unique chemical bands that did not appear in the lignin-derived char prepared under Ar.  相似文献   

18.
In-situ X-ray computed tomography (XCT) imaging is employed to investigate the smoldering dynamics of biomass at the sub-millimeter scale. This technique provides simultaneous and spatially-resolved information about the gas temperature and the biomass density, thereby enabling tracking of the pyrolysis and char oxidation fronts. To achieve well-controlled heating and flow conditioning, oak biomass samples are instrumented above a diffusion flame inside a tube, with total oxygen concentrations of 6% and 11% per volume. Experiments are performed on a laboratory XCT system. The flow is diluted with Kr to increase X-ray attenuation in the gas phase thus allowing for simultaneous 3D measurements of sample density and surrounding temperature. XCT scans are acquired every 90 s at a spatial resolution of 135 µm. The high spatial resolution enables the volumetric visualization of the smoldering process that is associated with pyrolysis and char oxidation. These measurements show how the grain structure affects flame stabilization and induces fingering of the pyrolysis front, while crack formation accelerates the char oxidation locally. Evaluations of the sample mass via XCT are compared with load cell measurements, showing good agreement. A low-order model is developed to evaluate the propagation speeds of pyrolysis and oxidation fronts from the X-ray data over time, and comparisons are made with the surface recess speed.  相似文献   

19.
High-temperature field evaporation of tungsten and tantalum emitters in the temperature range from room temperature to 2500 K is studied using a static magnetic mass spectrometer equipped with a field source of ions. At room temperature, triply charged W3+ and Ta3+ ions alone are observed in the mass spectra. However, as the emitter temperature grows, the charge of the ions decreases. At T ≈ 1000 K, doubly charged W2+ and Ta2+ ions dominate in the spectra, and singly charged W+ and Ta+ ions appear in the temperature range 1900 < T < 2500 K. The evaporation rate of the singly charged ions is one to two orders of magnitude lower than the evaporation rate of the doubly charged particles. The energy parameters of field evaporation for differently charged tungsten ions are found.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号