首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hetero-/homogeneous combustion of hydrogen/air mixtures over platinum was investigated experimentally and numerically in a channel-flow configuration at fuel-rich equivalence ratios ranging from 2 to 7, pressures up to 5 bar and wall temperatures 760–1200 K. Experiments involved in situ one-dimensional Raman measurements of major gas-phase species concentrations over the catalyst boundary layer and planar laser induced fluorescence (LIF) of the OH radical, while simulations included an elliptic 2-D model with detailed heterogeneous and homogeneous reaction mechanisms. The employed reaction schemes reproduced the measured catalytic reactant consumption, the onset of homogeneous ignition, and the post-ignition flame shapes at all examined conditions. Although below a critical pressure, which depended on temperature, the intrinsic gas-phase kinetics of hydrogen dictated lower reactivity for the fuel-rich stoichiometries when compared to fuel-lean ones, homogeneous ignition was still more favorable for the rich stoichiometries due to the lower molecular transport of the deficient oxygen reactant that resulted in modest catalytic reactant consumption over the gaseous induction zone. Above the critical pressure, the intrinsic gaseous hydrogen kinetics yielded higher reactivity for the rich stoichiometries, which resulted in vigorous gaseous combustion at pressures up to 5 bar, in contrast to lean stoichiometry studies whereby homogeneous combustion was altogether suppressed above 3 bar. Computations at fuel-rich stoichiometries in practical channel geometries indicated that homogeneous combustion was not of concern for reactor thermal management, since the larger than unity Lewis number of the deficient oxygen reactant confined the flames to the core of the channel, away from the solid walls.  相似文献   

2.
The hetero-/homogeneous combustion of fuel-lean hydrogen/air premixtures over platinum was investigated experimentally and numerically in the pressure range 1 bar  p  10 bar. Experiments were carried out in an optically accessible channel-flow catalytic reactor and included planar laser induced fluorescence (LIF) of the OH radical for the assessment of homogeneous (gas-phase) ignition, and 1-D Raman measurements of major gas-phase species concentrations for the evaluation of the heterogeneous (catalytic) processes. Simulations were performed with a full-elliptic 2-D model that included detailed heterogeneous and homogeneous chemical reaction schemes. The predictions reproduced the measured catalytic hydrogen consumption, the onset of homogeneous ignition at pressures of up to 3 bar and the diminishing gas-phase combustion at p  4 bar. The suppression of gaseous combustion at elevated pressures bears the combined effects of the intrinsic homogeneous hydrogen kinetics and of the hetero/homogeneous chemistry coupling via the catalytically produced water over the gaseous induction zone. Transport effects, associated with the large diffusivity of hydrogen, have a smaller impact on the limiting pressure above which gaseous combustion is suppressed. It is shown that for practical reactor geometrical confinements, homogeneous combustion is still largely suppressed at p  4 bar even for inlet and wall temperatures as high as 723 and 1250 K, respectively. The lack of appreciable gaseous combustion at elevated pressures is of concern for the reactor thermal management since homogeneous combustion moderates the superadiabatic surface temperatures attained during the heterogeneous combustion of hydrogen.  相似文献   

3.
The hetero-/homogeneous combustion of fuel-lean CO/H2/O2/N2 mixtures over platinum is investigated at pressures up to 5 bar, inlet temperatures (TIN) up to 874 K, and a constant CO:H2 molar ratio of 2:1. Experiments are performed in an optically accessible channel-flow catalytic reactor and involve planar laser induced fluorescence (LIF) of the OH radical for the assessment of homogeneous (gas-phase) ignition and 1-D Raman measurements of major gas-phase species concentrations over the catalyst boundary layer for the evaluation of the heterogeneous (catalytic) processes. Simulations are carried out with an elliptic 2-D model that includes detailed heterogeneous and homogeneous chemical reaction schemes. The predictions reproduce the Raman-measured catalytic CO and H2 consumption, and it is further shown that for wall temperatures in the range 975 ? Tw ? 1165 K the heterogeneous pathways of CO and H2 are largely decoupled. However, for wall temperatures below a limiting value of 710–720 K and for the range of pressures and mixture preheats investigated, CO(s) blockage of the surface inhibits the catalytic conversion of both fuel components. The homogeneous ignition distance is well-reproduced by the model for TIN > 426 K, but it is modestly overpredicted at lower TIN. Possible reasons for these modest differences can be the values of third body efficiencies in the gas-phase reaction mechanism. The sensitivity of homogeneous ignition distance on the catalytic reactions is weak, while the H2/O2 subset of the CO/H2/O2 gaseous reaction mechanism controls the onset of homogeneous ignition. Pure hydrogen hetero-/homogeneous combustion results in flames established very close to the catalytic walls. However, in the presence of CO the gaseous combustion of hydrogen extends well-inside the channel core, thus allowing homogeneous consumption of H2 at considerably shorter reactor lengths. Finally, implications of the above findings for the design of syngas-based catalytic reactors for power generation systems are discussed.  相似文献   

4.
The start-up of platinum-coated, hydrogen-fuelled planar channels with heights of 1 mm is investigated numerically using 2-D transient simulations with detailed hetero-/homogeneous chemistry, heat conduction in the solid wall and surface radiation heat transfer. Simulations encompass pressures of 1 and 5 bar and fuel-lean H2/air equivalence ratios of 0.10 to 0.28. Catalytic ignition is inhibited by rising pressure and increasing hydrogen concentration. However, at temperatures above the catalytic ignition temperature Tign, the dependencies of the heterogeneous reactivity reverse, showing a positive order ~1.5 with respect to hydrogen concentration and an overall positive pressure order of ~0.97. Despite the longer catalytic ignition times for the larger equivalence ratios, the times required to reach steady state are shorter at larger stoichiometries due to their enhanced catalytic reactivity at T > Tign and the resulting higher exothermicity. Following catalytic ignition, the wall temperatures eventually attain superadiabatic values due to the diffusional imbalance of hydrogen. Homogeneous chemistry considerably moderates the superadiabatic surface temperatures at 5 bar, as the gaseous combustion zone extends parallel to the channel wall and thus shields the catalyst surface from the hydrogen-rich channel core. Furthermore, gas-phase chemistry reduces the steady-state times and substantially increases the hydrogen conversion.  相似文献   

5.
The pure heterogeneous and the coupled hetero-/homogeneous combustion of fuel-lean propane/air mixtures over platinum have been investigated at pressures 1 bar  p  7 bar, fuel-to-air equivalence ratios 0.23  φ  0.43, and catalytic wall temperatures 723 K  Tw  1286 K. Experiments were performed in an optically accessible catalytic channel-flow reactor and involved 1-D Raman measurements of major gas-phase species concentrations across the reactor boundary layer for the assessment of catalytic fuel conversion and planar laser induced fluorescence (LIF) of the OH radical for the determination of homogeneous ignition. Numerical predictions were carried out with a 2-D elliptic CFD code that included a one-step catalytic reaction for the total oxidation of propane on Pt, an elementary C3 gas-phase chemical reaction mechanism, and detailed transport. A global catalytic reaction step valid over the entire pressure–temperature-equivalence ratio parameter range has been established, which revealed a p0.75 dependence of the catalytic reactivity on pressure. The aforementioned global catalytic step was further coupled to a detailed gas-phase reaction mechanism in order to simulate homogeneous ignition characteristics in the channel-flow reactor. The predictions reproduced within 10% the measured homogeneous ignition distances at pressures p  5 bar, while at p = 7 bar the simulations overpredicted the measurements by 19%. The overall model performance suggests that the employed hetero-/homogeneous chemical reaction schemes are suitable for the design of propane-fueled catalytic microreactors.  相似文献   

6.
An experimental and kinetic modeling study of the autoignition of 3-methylheptane, a compound representative of the high molecular weight lightly branched alkanes found in large quantities in conventional and synthetic aviation kerosene and diesel fuels, is reported. Shock tube and rapid compression machine ignition delay time measurements are reported over a wide range of conditions of relevance to combustion engine applications: temperatures from 678 to 1356 K; pressures of 6.5, 10, 20, and 50 atm; and equivalence ratios of 0.5, 1.0, and 2.0. The wide range of temperatures examined provides observation of autoignition in three reactivity regimes, including the negative temperature coefficient (NTC) regime characteristic of paraffinic fuels. Comparisons made between the current ignition delay measurements for 3-methylheptane and previous results for n-octane and 2-methylheptane quantifies the influence of a single methyl substitution and its location on the reactivity of alkanes. It is found that the three C8 alkane isomers have indistinguishable high-temperature ignition delay but their ignition delay times deviate in the NTC and low-temperature regimes in correlation with their research octane numbers. The experimental results are compared with the predictions of a proposed kinetic model that includes both high- and low-temperature oxidation chemistry. The model mechanistically explains the differences in reactivity for n-octane, 2-methylheptane, and 3-methylheptane in the NTC through the influence of the methyl substitution on the rates of isomerization reactions in the low-temperature chain branching pathway, that ultimately leads to ketohydroperoxide species, and the competition between low-temperature chain branching and the formation of cyclic ethers, in a chain propagating pathway.  相似文献   

7.
Decalin is the simplest polycyclic alkane (polynaphtenic hydrocarbon) found in liquid fuels (jet fuels, Diesel). In order to better understand the combustion characteristics of decalin, this study provides new experimental data for its oxidation in a jet-stirred reactor. For the first time, stable species concentration profiles were measured in a jet-stirred reactor at a constant mean residence time of 0.1 s and 0.5 s at respectively 1 and 10 atm, over a range of equivalence ratios (? = 0.5–1.5) and temperatures (750–1350 K). The oxidation of decalin under these experimental conditions was modeled using a semi-detailed chemical kinetic reaction mechanism (11,000 reactions involving 360 species) derived from a previously proposed scheme for the ignition of the same fuel in a shock-tube. The proposed mechanism that includes both low- and high-temperature chemistry shows reasonably good agreement with the present experimental data set. It can also represent well decalin pyrolysis and oxidation data available in the literature. Reaction path analyses and sensitivity analyses were conducted to interpret the results.  相似文献   

8.
In this paper, laser-induced ignition was investigated for compressed natural gas–air mixtures. Experiments were performed in a constant volume combustion chamber, which simulate end of the compression stroke conditions of a SI engine. This chamber simulates the engine combustion chamber conditions except turbulence of air–fuel mixture. It has four optical windows at diametrically opposite locations, which are used for laser ignition and optical diagnostics simultaneously. All experiments were conducted at 10 bar chamber pressure and 373 K chamber temperature. Initial stage of combustion phenomena was visualized by employing Shadowgraphy technique using a high speed CMOS camera. Flame kernel development of the combustible fuel–air mixture was investigated under different relative air–fuel ratios (λ=1.2?1.7) and the images were interrogated for temporal propagation of flame front. Pressure-time history inside the combustion chamber was recorded and analyzed. This data is useful in characterizing the laser ignition of natural gas–air mixture and can be used in developing an appropriate laser ignition system for commercial use in SI engines.  相似文献   

9.
Examination of the surface behavior and flame structure of a bimodal ammonium perchlorate (AP) composite propellant at elevated pressure was performed using high speed (5 kHz) planar laser-induced fluorescence (PLIF) from 1 to 12 atm and visible surface imaging spanning 1–20 atm. The dynamics of the combustion of single, coarse AP crystals were resolved using these techniques. It was found that the ignition delay time for individual AP crystals contributed significant to the particle lifetime only at pressures below about 6 atm. In situ AP crystal burning rates were found to be higher than rates reported for pure AP deflagration studies. The flame structure was studied by exciting OH molecules in the gas phase. Two types of diffusion flames were observed above the composite propellant: jet-like flames and v-shaped, inverted, overventilated, flames (IOF) lifted off the surface. While jet-like diffusion flames have been imaged at low pressures and simulated by models, the lifted IOFs have not been previously reported or predicted. The causes for the observed flame structures are explained by drawing on an understanding of the surface topography and disparities in the burning rates of the fuel and oxidizer.  相似文献   

10.
High pressure iso-octane shock tube experiments were conducted to assist in the development of a Jet A surrogate kinetic model. Jet A is a kerosene based jet fuel composed of hundreds of hydrocarbons consisting of paraffins, olefins, aromatics and naphthenes. In the formulation of the surrogate mixture, iso-octane represents the branched paraffin class of hydrocarbons present in aviation fuels like Jet A. The experimental work on iso-octane was performed in a heated high pressure single pulse shock tube. The mole fractions of the stable species were determined using gas chromatography and mass spectroscopy. Experimental data on iso-octane oxidation and pyrolysis were obtained for temperatures from 835 to 1757 K, pressures from 21 to 65 atm, reactions times from 1.11 to 3.66 ms, and equivalence ratios from 0.52 to 1.68, and ∞. Iso-octane oxidation showed that the fuel decays through thermally driven oxygen free decomposition at conditions studied. This observation prompted an experimental and modeling study of iso-octane pyrolysis using an iso-octane sub-model taken from a recently published n-decane/iso-octane/toluene surrogate model. The revised iso-octane sub-model showed improvements in predicting intermediate species profiles from pyrolytic experiments and oxidation experiments. The modifications to the iso-octane sub-model also contributed to better agreement in predicting the formation of carbon monoxide and carbon dioxide when compared to the recently published 1st Generation Surrogate model and a recently published iso-octane oxidation model. Model improvements were also seen in predicting species profiles from flow reactor oxidation experiments and ignition delay times at temperatures above 1000 K at both 10 and 50 atm.  相似文献   

11.
The homogeneous ignition of CH4/air, CH4/O2/H2O/N2, and CH4/O2/CO2/N2 mixtures over platinum was investigated experimentally and numerically at pressures 4 bar p 16 bar, temperatures 1120 K T 1420 K, and fuel-to-oxygen equivalence ratios 0.30 0.40. Experiments have been performed in an optically accessible catalytic channel-flow reactor and included planar laser induced fluorescence (LIF) of the OH radical for the determination of homogeneous (gas-phase) ignition and one-dimensional Raman measurements of major species concentrations across the reactor boundary layer for the assessment of the heterogeneous (catalytic) processes preceding homogeneous ignition. Numerical predictions were carried out with a 2D elliptic CFD code that included elementary heterogeneous and homogeneous chemical reaction schemes and detailed transport. The employed heterogeneous reaction scheme accurately captured the catalytic methane conversion upstream of the gaseous combustion zone. Two well-known gas-phase reaction mechanisms were tested for their capacity to reproduce measured homogeneous ignition characteristics. There were substantial differences in the performance of the two schemes, which were ascribed to their ability to correctly capture the pT parameter range of the self-inhibited ignition behavior of methane. Comparisons between measured and predicted homogeneous ignition distances have led to the validation of a gaseous reaction scheme at 6 bar p 16 bar, a pressure range of particular interest to gas-turbine catalytically stabilized combustion (CST) applications. The presence of heterogeneously produced water chemically promoted the onset of homogeneous ignition. Experiments and predictions with CH4/O2/H2O/N2 mixtures containing 57% per volume H2O have shown that the validated gaseous scheme was able to capture the chemical impact of water in the induction zone. Experiments with CO2 addition (30% per volume) were in good agreement with the numerical simulations and have indicated that CO2 had only a minor chemical impact on homogeneous ignition.  相似文献   

12.
13.
Combustion of lunar regolith mixed with energetic additives is a potential method for production of construction materials in future moon missions. Recently, self-sustained combustion in the mixtures of JSC-1A lunar regolith and magnesium has been demonstrated. However, the concentration of magnesium in those mixtures was as high as 26 wt%. Note that magnesium must be either transported from Earth or recovered from lunar minerals or used structures. The present paper focuses on the minimization of magnesium content in JSC-1A/Mg mixtures. The mixtures were compacted into pellets and ignited in argon environment. Initial attempts to decrease magnesium concentration resulted in the observations of a spinning combustion wave at 23 wt% Mg. The observed spin combustion involved periodical motion of two counterpropagating hot spots along a helical path on the sample surface. These observations, including features such as formation of a faster hot spot after collision of the counterpropagating spots, confirm theoretical predictions for spin combustion in solid–solid mixtures. High-energy mechanical milling of JSC-1A in a planetary ball mill significantly increased its reactivity and improved combustion of its mixtures with magnesium. Mixtures of the obtained powder (the median diameter of about 3 μm) with 26 wt% Mg exhibit easy ignition and vigorous combustion. The minimum concentration of magnesium required for self-sustained propagation of a planar combustion front is as low as 13 wt%.  相似文献   

14.
Homogeneous charge compression ignition (HCCI) is a very promising future combustion concept for internal combustion engines. There are several technical difficulties associated with this concept, and precisely controlling the start of auto-ignition is the most prominent of them. In this paper, a novel concept to control the start of auto-ignition is presented. The concept is based on the fact that most HCCI engines are operated with high exhaust gas recirculation (EGR) rates in order to slow-down the fast combustion processes. Recirculated exhaust gas contains combustion products including moisture, which has a relative peak of the absorption coefficient around 3 μm. These water molecules absorb the incident erbium laser radiations (λ=2.79 μm) and get heated up to expedite ignition. In the present experimental work, auto-ignition conditions are locally attained in an experimental constant volume combustion chamber under simulated EGR conditions. Taking advantage of this feature, the time when the mixture is thought to “auto-ignite” could be adjusted/controlled by the laser pulse width optimisation, followed by its resonant absorption by water molecules present in recirculated exhaust gas.  相似文献   

15.
The mechanism of reducing the flammability of ultrahigh-molecular-weight polyethylene (UHMWPE) with triphenyl phosphate (TPP) additives was investigated, using the methods of molecular-beam mass spectrometry (MBMS), differential mass spectrometric thermal analysis (DMSTA), thermocouple, thermogravimetry (TGA), and gas chromatography mass spectrometry (GC/MS). Kinetics of thermal degradation of pure UHMWPE and of that mixed with TPP was studied at high (~150 K/s) and low (0.17 K/s) heating rates at atmospheric pressure. Effective values of the rate constants of the thermal degradation reaction were determined. Times of ignition delay, the limiting oxygen index, the burning rates of UHMWPE and UHMWPE + TPP and their temperature profiles in the flames were measured. The flame structure was investigated and the composition of the combustion products in the flame zone adjacent to the specimen’s combustion surface. TPP vapors in flame were found. Addition of TPP to UHMWPE was found to result in reduction of polymer flammability. TPP was shown to act as flame retardant both in the condensed and gas phases.  相似文献   

16.
Ignition temperatures of non-premixed cyclohexane, methylcyclohexane, ethylcyclohexane, n-propylcyclohexane, and n-butylcyclohexane flames were measured in the counterflow configuration at atmospheric pressure, a free-stream fuel/N2 mixture temperature of 373 K, a local strain rate of 120 s?1, and fuel mole fractions ranging from 1% to 10%. Using the recently developed JetSurf 2.0 kinetic model, satisfactory predictions were found for cyclohexane, methyl-, ethyl-, and n-propyl-cyclohexane flames, but the n-butylcyclohexane data were overpredicted by 20 K. The results showed that cyclohexane flames exhibit the highest ignition propensity among all mono-alkylated cyclohexanes and n-hexane due to its higher reactivity and larger diffusivity. The size of mono-alkyl group chain was determined to have no measurable effect on ignition, which is a result of competition between fuel reactivity and diffusivity. Detailed sensitivity analyses showed that flame ignition is sensitive primarily to fuel diffusion and also to H2/CO and C1–C3 hydrocarbon kinetics.  相似文献   

17.
Excited-state species profiles and ignition delay times were obtained under dilute conditions (99% Ar) using a heated shock tube for methyl octanoate (C9H18O2), n-nonane (n-C9H20), and methylcyclohexane (MCH) over a broad range of temperature and equivalence ratio (? = 0.5, 1.0, 2.0) at pressures near 1 and 10 atm. Measurements were then extended to include two ternary blends of the fuels using 5% and 20% (vol.) of the methyl ester under stoichiometric conditions. Using three independently validated chemical kinetics mechanisms, a model was compiled to assess the influence of methyl ester concentration on ignition delay times of the ternary blends. Under near-atmospheric pressure, ignition delay times were of the following order for the pure fuels: methyl octanoate < n-nonane < methylcyclohexane. Experimental results indicate that the ignition behavior of the higher-order methyl ester approaches that of the higher-order linear alkane with increased pressure regardless of equivalence ratio. Methyl octanoate also displayed significantly lower pressure dependence relative to the linear alkane and the cycloalkane species. Both of these results are supported by model calculations. Blending of methyl octanoate with n-nonane and methylcyclohexane impacted ignition delay time results more strongly at 1.5 atm, yet had only a small effect near 10 atm for temperatures above 1400 K. The study provides the first shock-tube data for a ternary blend of a linear alkane, a cycloalkane, and a methyl ester. Ignition delay time measurements for the C9:0 methyl ester were also measured for the first time.  相似文献   

18.
Time-dependent, multidimensional simulations of unstable propagating detonations were performed using a detailed thermochemical reaction model for a stoichiometric argon-diluted hydrogen–oxygen mixture at low pressures and a hydrogen–air mixture at atmospheric pressure. Detonation cells computed for the low-pressure, dilute H2–O2–Ar systems were regular in shape, and their sizes compared reasonably well with experimental observations. The computed H2–air cells at atmospheric conditions were qualitatively different from those observed in experiments, and their widths range from less than 1 mm to nearly 5 mm with multilevel hierarchal structures. The effective activation energy of the H2–air mixture, based on constant-volume ignition delay times computed using the detailed thermochemical model, varies between 5 and 40 over the range of post-shock temperatures and pressures in the simulations and is, on average, significantly larger than expected based on the regularity of experimental cellular patterns. Analysis of the simulations suggests that vibrational relaxation of the gas molecules, a process which is ignored when calibrating detailed chemical reaction models, occurs on time scales similar to the ignition delay times for the detonations and may be a source of discrepancy between numerical and experimental results.  相似文献   

19.
In order to investigate the effects of ambient pressure and igniter location on piloted ignition of solid fuels, the ignition mass flux of PMMA was experimentally determined for locations of the igniter between 6 and 70 mm above the solid surface, under two external heat fluxes of 21.2 and 25.4 kW/m2. The experimental results show that the ignition mass flux decreases as the igniter approached the solid surface until it reached a minimum, and then the ignition mass flux remains nearly constant followed by a slight increase with a further decrease of the igniter location. In addition, in another series of experiments the ignition mass flux for elm wood decreases by a factor 0.6 at reduced pressure 0.67 (Tibet 0.67 atm) compared to the ignition mass flux at normal pressure (Hefei, 1.0 atm). The results of this work are explained well by a numerical piloted ignition model which also explains recent observations on the ignition mass flux at reduced pressures in a forced-flow ignition and flame spread apparatus.  相似文献   

20.
A study of the oxidation of ethylbenzene has been performed in a jet-stirred reactor (JSR) at quasi-atmospheric pressure (800 Torr), at temperatures ranging 750–1100 K, at a mean residence time of 2 s and at three equivalence ratios ? (0.25, 1, and 2). Reactants and 25 reaction products were analyzed online by gas chromatography after sampling in the outlet gas. A new mechanism for the oxidation of ethylbenzene was proposed whose predictions were in satisfactory agreement with the measured species profiles obtained in JSR and with flow reactor data from the literature. A flow rate analysis has been performed at 900 K showing the important role of the combinations with HO2 radicals of resonance stabilized radicals obtained from ethylbenzene by H-atom abstractions. Other important reactions of ethylbenzene are the ipso-additions of H- and O-atoms and of methyl radicals to the aromatic ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号