首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Abstract— Ultraviolet B radiation (280-320 nm) can systemically suppress contact hypersensitivity (CHS), delayed type hypersensitivity (DTH) and tumor rejection responses in mice. Several models have been postulated for the initiation of this UVB-induced immune suppression and, although the complete mechanism is unclear, our early studies suggested that initiation is via the activation of a photoreceptor in the skin, identified as urocanic acid (UCA). Recent preliminary data from our laboratory and others indicated that UVA (320-400 nm)-emitting broadband sunlamps can also isomerize UCA but may not lead to immune suppression, in contrast to UVB-emitting sunlamps, which cause both effects. Although the reason for this inconsistency is unknown, the emission spectra of UVA lamps contain differing amounts of UVB, UVA-I (340-400 nm) and UVA-II (320-340 nm) from those of UVB sources. In this study we determined a detailed dose-response for the isomerization of UCA in mouse skin using the UVA-I, UVA-II and UVA-I+II wavelength ranges. The dose-response curves obtained were put on an equal energy basis by quantum correction and the possibility of wavelength interaction for this effect investigated. A simple additive wavelength interaction between UVA-I, UVA-II, and UVA-I+II was observed for trans-UCA photoisomerization. This result indicates that the failure of UVA-I, UVA-II or UVA-I+II radiation to induce immune suppression of the CHS response in an animal model is not due to complex wavelength interactions and/or the presence of an in vivo endogenous photosensitizer of UCA isomerization. Other factors, such as downstream blocking by UVA of the cis -UCA generated signal, may be involved.  相似文献   

2.
Abstract— -Urocanic acid (UCA) represents the major ultraviolet B (UVB, 290–320 nm)-absorbing component of the skin. Trans-UCA is naturally produced in the stratum corneum and converts to the cis isomer upon UVB irradiation. In this study, we examined the effect of purified cis -UCA (about 99% of cis isomer) on the human Langerhans cell (LC) allostimulatory function by using the mixed epidermal cell-lymphocyte reaction (MELR). We found that addition of increasing amounts (6.5–400 μg/mL) of purified cis-UCA or (rara-UCA did not modify the T-cell response supported by enriched LC (eLC: 8–25% LC) as well as purified LC (pLC: 70–90% LC) suspensions. Because cis-UCA had no effect on the allostimulatory function of untreated LC, we investigated whether this compound could modify T-cell proliferation induced by UVB-irradiated LC. The UVB exposure of eLC or pLC to 100 J/m2 significantly inhibited the capacity of both suspensions to mount a T-cell response. However, addition of cis- UCA did not potentiate this UVB-induced immunosuppression. The eLC or pLC were then incubated with cis-UCA for 18 h at 37°C and washed before adding to allogeneic T cells. The obtained proliferative response was similar to that induced by control LC incubated in medium alone, demonstrating that pretreatment with cis -UCA did not alter human LC function. In conclusion, these results strongly suggest that cis-UCA has no direct effect on human LC antigen-presenting function.  相似文献   

3.
Abstract— There is considerable evidence that suppression of the immune system by UVB (280–320 nm UV) irradiation is initiated by UVB-dependent isomerization of a specific skin photoreceptor, urocanic acid (UCA), from the trans to the cis form. Previous studies have confirmed that cis -UCA administration to mice 3–5 days prior to hapten sensitization at a distant site, suppresses the contact hypersensitivity (CHS) response upon challenge. This study demonstrates in mice that cis -UCA, like UVB, suppresses CHS to trinitrochlorobenzene by a mechanism partly dependent on prostanoid production. In vitro experimentation showed that human keratinocytes, isolated from neonatal foreskin, increased prostaglandin E2 (PGE2) production in response to histamine but not UCA alone. However, cis -UCA synergized with histamine for increased PGE2 production by keratinocytes. cis -urocanic acid also increased the sensitivity of keratinocytes for PGE2 production in response to histamine. Prostaglandin E2 from keratinocytes exposed to cis -UCA and histamine may contribute directly, or indirectly, to the regulation of CHS responses by UVB irradiation.  相似文献   

4.
It has been demonstrated that UVB radiation (290-320 nm) suppresses mammalian cell-mediated immunity by effecting the trans to cis isomerization of urocanic acid (UCA) in the stratum corneum, the uppermost layer of the skin. Trans-urocanic acid has been shown to be the photoreceptor for UVB-induced immune suppression and the cis-isomer has been demonstrated to be immunosuppressive. Little is known, however, about how the isomerization of UCA may affect the proximal or distal cells of the skin or the immune system. We report here that trans-UCA is biologically active in vitro in human dermal fibroblasts, inducing adenyl cyclase as measured by cAMP (adenosine 3',5'-cyclic monophosphate) formation in a dose-dependent manner similar to the action of histamine. Trans-UCA and histamine stimulate 50% of maximum activity at concentrations of 3.3 microM and 13.8 microM respectively. Cis-UCA does not increase cAMP in these human fibroblasts but actively down regulates the increase of cAMP induced by either histamine or trans-UCA. Cis-UCA down regulated the histamine response by 75% and the trans-UCA response by 60% at a concentration range of 1 mM to 1 nM. The trans-UCA induction of cAMP can also be downregulated with an H2 histamine receptor antagonist cimetidine. These results support the hypothesis that a cellular target for cis-UCA is the dermal fibroblast and the effects reported here may represent the initial biochemical and cellular event for UVB-induced immune suppression i.e. the immediate step following the isomerization of trans to cis-UCA is the down regulation of cAMP by cis-UCA. Regulation of such an important second messenger such as cAMP could then allow cascading signals to occur, leading to immune suppression.  相似文献   

5.
Abstract— Cis -urocanic acid (UCA), formed in the stratum corneum by UV irradiation of trans -UCA has been proposed as a mediator of UV-induced immunosuppression in the skin. In this study, we examined the in vitro effect of cis -UCA (6-100 μg/mL) on the human mixed lymphocyte reaction (MLR) and the mixed epidermal cell lymphocyte reaction (MECLR). Addition of cis -UCA (purified or in a mixture with trans -UCA) did not affect the MLR but was able to induce a 20% suppression of the MECLR responses. Because this effect of cis -UCA on the MECLR was not as strong as could be expected from previous in vivo results, we designed a set of experiments in order to enhance the in vitro immunosuppressive capacity of cis -UCA. Firstly, we preincubated epidermal cells with UCA (50 u.g/mL) for 3 or 6 days before culture in the MECLR because in vivo repeated UV exposure can lead to a photostationary state, where cis -UCA may be present for several weeks. This pretreatment with cis-UCA resulted in a maximal decrease of the MECLR responses of 27%, whereas trans -UCA had no effect. Secondly, we investigated whether UVB irradiation of epidermal cells could make cells more sensitive to cis -UCA. However, addition of trans- or cis -UCA did not potentiate the reduced alloac-tivating capacity of UVB-irradiated cells. Finally, we examined the possibility of a synergistic effect of cis -UCA with histamine. Addition of histamine suppressed the MLR and MECLR responses, but neither cis - nor trans -UCA were able to modulate this decrease. We conclude that cis -UCA can partly downregulate the human MECLR but not the MLR. The mechanism involved in this differential downregulation is not known. In this respect it is striking that cis -UCA does not potentiate the UVB- or histamine-induced suppression of the MECLR.  相似文献   

6.
Urocanic acid (UCA) is a chromophore in the stratum corneum. Ultraviolet radiation (ultraviolet B) has been shown to suppress mammalian cell-mediated immunity. The photoisomerization of trans -UCA to cis -UCA was proposed as the initiator of the suppression process. Cis -urocanic acid has been demonstrated to suppress immunity by a variety of experiments. Investigators should be aware that laboratory illumination may be capable of interconverting trans -UCA and cis -UCA during experimental manipulations. This possible inadvertent contamination of one isomer by the other may influence results. We demonstrated that fluorescent lamps, daylight, sunlight and incandescent lamps were able to bring about isomerization. Window glass and container materials of plastic and clear glass did not filter out effective wavelengths, but three commercial plastic diffusers on fluorescent fixtures prevented the isomerization. Because the molar extinction coefficient (ɛ) for cis -UCA is less than that of trans -UCA, we have exposed 0.1 m M trans -UCA to ambient light and monitored the change in absorbance. A method is given to calculate the percentage of trans and cis isomers from the absorbance at 277 nm when the initial purity and absorbance are known. Using this procedure, we validated the molar extinction coefficient of cis -UCA.  相似文献   

7.
Many studies have implicated cis-urocanic acid (cis-UCA) in UVB-induced immunomodulation. The strongest evidence came from studies in mice whereby a cis-UCA antibody blocked UVB-induced suppression of delayed-type hypersensitivity responses. Furthermore, in several studies, the cis-UCA antibody at least partially reversed UVB suppression of contact hypersensitivity responses. Previous reports suggested that cis-UCA was immunomodulatory through its effects on keratinocytes, Langerhans cells, fibroblasts, T lymphocytes, natural killer cells and monocytes/macrophages. As dermal mast cells were recently demonstrated to be critical to UVB-induced systemic suppression of certain delayed-type and contact hypersensitivity responses, we investigated whether they were involved in the processes by which cis-UCA was immunomodulatory. Not only was there a correlation between dermal mast cell prevalence and the degree of susceptibility of different strains of mice to the immunomodulatory effects of cis-UCA, there was also a functional link. Mast cell-depleted Wf/Wf mice were rendered susceptible to immunomodulation by cis-UCA injected subcutaneously only after their dorsal skin had been reconstituted with bone marrow-derived mast cell precursors. These studies suggest that mast cells are critical to the processes by which cis-UCA suppresses systemic contact hypersensitivity responses to the hapten, trinitrochlorobenzene, in mice.  相似文献   

8.
In studies involving mice in which doses of UVA (320-400 nm) and UVB (290-320 nm) radiation were administered alone or combined sequentially, we observed a protective effect of UVA against UVB-induced erythema/edema and systemic suppression of contact hypersensitivity. The UVA immunoprotection was mediated by the induction of the stress enzyme heme oxygenase-1 (HO-1) in the skin, protection of the cutaneous Th1 cytokines interferon-gamma (IFN-gamma) and IL-12 and inhibition of the UVB-induced expression of the Th2 cytokine IL-10. In this study, we seek evidence for an immunological waveband interaction when UVA and UVB are administered concurrently to hairless mice as occurs during sunlight exposure in humans. A series of spectra providing varying ratios of UVA/UVB were developed, with the UVA ratio increased to approximately 3.5 times the UVA component in solar simulated UV (SSUV). We report that progressively increasing the UVA component of the radiation while maintaining a constant UVB dose resulted in a reduction of both the erythema/edema reaction and the degree of systemic immunosuppression, as measured as contact hypersensitivity. The UVA-enhanced immunoprotection was abrogated in mice treated with a specific HO enzyme inhibitor. UVA-enhanced radiation also upregulated the expression of cutaneous IFN-gamma and IL-12 and inhibited expression of both IL-6 and IL-10, compared with the activity of SSUV. The results were consistent with the previously characterized mechanisms of photoprotection by the UVA waveband alone and suggest that the UVA component of solar UV may have beneficial properties for humans.  相似文献   

9.
Abstract— Exposure of skin to UV radiation can cause diverse biological effects, including induction of inflammation, alteration in cutaneous immune cells and impairment of contact hypersensitivity (CHS) responses. Our laboratory has demonstrated that oral feeding as well as topical application of a poly-phenolic fraction isolated from green tea (GTP) affords protection against the carcinogenic effects of UVB (280–320 nm) radiation. In this study, we investigated whether GTP could protect against UVB-induced immunosuppression and cutaneous inflammatory responses in C3H mice. Immunosuppression was assessed by contact sensitization with 2,4-dinitrofluorobenzene applied to UVB-irradiated skin (local suppression) or to a distant site (systemic suppression), while double skin-fold swelling was used as the measure of UVB-induced inflammation. Topical application of GTP (1–6 mg/animal), 30 min prior to or 30 min after exposure to a single dose of UVB (2 kj/m2) resulted in significant protection against local (25–90%) and systemic suppression (23–95%) of CHS and inflammation in mouse dorsal skin (70–80%). These protective effects were dependent on the dose of GTP employed; increasing the dose (1–6 mg/animal) resulted in an increased protective effect (25–93%). The protective effects were also dependent on the dose of UVB (2–32 kJ/m2). Among the four major epicatechin derivatives present in GTP, (‐)-epigallocatechin-3-gallate, the major constituent in GTP, was found to be the most effective in affording protection against UVB-caused CHS and inflammatory responses. Our study suggests that green tea, specifically polyphenols present therein, may be useful against inflammatory dermatoses and immunosuppression caused by solar radiation.  相似文献   

10.
Urocanic Acid (UCA) exists in mammalian skin primarily as the trans isomer and is photoisomerized to cis UCA upon UVB absorption. Our previous studies indicated that the photoisomerization of UCA is the initiating event in UBV-induced suppression of cell-mediated immunity (tUCA----cUCA----immune suppression). The purpose of this study was to verify the role of UCA in UV-induced immune suppression of contact hypersensitivity (CHS) in BALB/c mice. Since UCA is a metabolite of the amino acid L-histidine, we reasoned that increased dietary levels of histidine should raise skin tUCA levels. If skin tUCA is the UVB photoreceptor for immune suppression, this increase should enhance UV-induced suppression of CHS. HPLC analysis of skin from BALB/c mice given a histidine-rich diet (10%) showed that the total amount of UCA is significantly higher in these animals than in mice fed a normal diet. Further, levels of suppression of CHS of 3% and 49% in control fed mice, induced by 4.8 and 7.2 kJ/m2 UVB were significantly increased to 21% and 71% respectively in histidine-fed animals at these same UVB doses. These findings provide additional support for the UCA model for immune suppression, and provide the first evidence that UV-induced immune suppression can be enhanced by a dietary component, L-histidine.  相似文献   

11.
Ultraviolet radiation can inhibit immune responses locally as well as systemically. Such effects have been measured in animals and humans exposed to ultraviolet B (wavelength 280-315 nm) (UVB) and ultraviolet A (315-400 nm) (UVA). The precise wavelength dependence is important for the identification of possible molecular targets and for assessments of risk of different artificial UV sources and solar UV. In such analyses, it is commonly assumed that radiation energy from each wavelength contributes to the effect independent of the other wavelengths. Here we show that this assumption does not hold good. In the present study, it was investigated whether exposure to broadband UVA or longwave ultraviolet A 1 (340-400 nm) (UVA 1) prior to the standard immunosuppressive UVB protocol might modulate the immunosuppressive effects induced by UVB. Preexposure to broadband UVA or longwave UVA 1, 1 day prior to the standard immunosuppressive UVB protocol, inhibited the UVB-induced suppression of delayed type hypersensitivity (DTH) to Listeria monocytogenes significantly. This effect was not associated with restoring the number of interleukin (IL-12)-positive cells in the spleen. Since isomerization of trans-urocanic acid (UCA) into the immunosuppressive cis-UCA isomer plays a crucial role in UVB-induced immunomodulation, in a second set of experiments it was investigated whether immunosuppression induced by cis-UCA might also be downregulated by preexposure to UVA. Animals were exposed to broad-band UVA or longwave UVA 1 prior to application of an immunosuppressive dose of cis- or trans-UCA as a control. Both UVA and UVA 1 appear to inhibit the cis-UCA-induced systemic immunosuppression (DTH and IL-12) to L. monocytogenes. These studies clearly show that UVA radiation modulates both UVB and cis-UCA-induced immunomodulation. In general, our studies indicate that both broadband UVA and longwave UVA 1 could induce modulation of UVB and cis-UCA-induced immunomodulation. As sunlight contains both UVA and UVB radiation the balance between these two radiations apparently determines the net immunomodulatory effect.  相似文献   

12.
UVB-induced immunosuppression, a promoter of photocarcinogenesis, involves the formation of pyrimidine dimers and cis-urocanic acid (cis-UCA), but reactive oxygen species (ROS) also plays an important role. Eicosapentaenoic acid (EPA) can inhibit photocarcinogenesis, but due to its polyunsaturated nature it is susceptible to oxidative damage by ROS. The antioxidant defense system may therefore be challenged upon ultraviolet-B (UVB) irradiation in the presence of EPA. We investigated whether topically applied EPA in mice could protect against local immunosuppression (contact hypersensitivity response to dinitrofluorobenzene) induced by UVB radiation (1.5 J/cm2), or topically applied cis-UCA (150 nmol/cm2) or thymidine dinucleotides (pTpT) (5 nmol/cm2). The influence of EPA on epidermal lipid peroxidation and antioxidant status was also measured. UVB irradiation, cis-UCA and pTpT all caused 70% immunosuppression. Topical pretreatment of mice with EPA partially protected against immunosuppression; the EPA dose needed to accomplish this was 10 nmol/cm2 for UVB irradiation, 100 nmol/cm2 for cis-UCA and 1000 nmol/cm2 for pTpT. Higher EPA doses caused higher UVB-induced lipid peroxidation and lower vitamin C levels. Glutathione only decreased with the highest EPA dose whereas vitamin E was not decreased after UVB irradiation. In conclusion, topically applied EPA protects against UVB-, cis-UCA- and pTpT-induced immunosuppression and maintenance of an adequate antioxidant defense seems to be an important prerequisite for the protective action by EPA.  相似文献   

13.
Abstract— Trans-urocanic acid (UCA) is found in the upper layer of the skin and UV irradiation induces its photoisomerization to cis -UCA. Cis -UCA mimics some of the immunosuppressive properties of UV exposure. The wavelength dependence for in vitro photoisomerization of trans-UCA (15 μM) over the spectral range 250 nm-340 nm (10 nm intervals) was determined. The action spectrum revealed that maximal cis-UCA production occurred at 280 nm, which is red-shifted by 10-12 nm from its absorption peak at 268 nm and differs markedly from the reported action spectra for cis-UCA production in mouse skin in vivo , which peaks at 300-310 nm. The reasons for the red shift between the in vitro and in vivo action spectra are not clear. There is limited evidence suggesting that the UV absorption maximum of trans- UCA red shifts from 268 nm in vitro to 310 nm on interaction with stratum corneum proteins in vivo. This phenomenon was investigated by applying trans-UCA (2.5 mg/cm2) in an oil emulsion to isolated human stratum corneum. After incubation at 37°C for 1 h, the absorption spectra of stratum corneum with UCA and with oil only were compared using a Xe arc source and a spectrora-diometer. A moderate red shift in trans-UCA absorption from ∼268 nm to 280 nm was observed. In summary, we suggest that the 10-12 nm red shift between the UCA absorption spectrum peak and the action spectrum peak in vitro may be accounted for by the wavelength dependence of quantum yields reported over the 254-313 nm range. The red shift between the in vitro and in vivo photoisomerization action spectra may result from the 10 to 12 nm red shift in the absorption of UCA in association with stratum corneum proteins, combined with increasing quantum yields over the 254-313 nm range.  相似文献   

14.
The incidence of skin cancer is increasing rapidly, particularly in the Caucasian population. Epidemiological and experimental studies demonstrated that ultraviolet radiation (UVR) is the primary cause for the increasing incidence of skin cancer. It is well known that UV irradiation induces DNA damage. If the damage is not repaired or removed in time, it can lead to mutations and skin carcinogenesis. N-acetylcysteine (NAC) has been shown to be an effective protector against UVB-induced immunosuppression and to modulate the expression of some oncogenes and tumor suppressor genes. To test further the protective effect of NAC against UVR, we used both in vitro and in vivo models to investigate the effect of NAC on UVB-induced apoptosis and repair of DNA damage in human and mouse keratinocytes. Our data indicate that the intracellular glutathione level was increased after treatment with NAC at 10-20 mM but decreased with 40 mM NAC treatment due to the toxicity. At concentrations up to 20 mM NAC did not have a significant effect on UVB-induced apoptosis of cultured human keratinocytes. In addition, in an in vivo mouse model, topical application of NAC (3 mumol cm-2) that has been shown to inhibit UVB-induced immunosuppression did not have any effect on UVB-induced apoptosis and did not reduce the formation or enhance the repair of UVB-induced cyclobutane pyrimidine dimers and (6-4) photoproducts. Our results indicate that NAC is ineffective in preserving the genomic stability of keratinocytes against UVB irradiation.  相似文献   

15.
The Philips TL01 narrow-band (311–313 nm) fluorescent lamp provides effective phototherapy for psoriasis and atopic eczema while emitting less erythemogenic radiation than conventional broad-band ( e.g . Philips TL12; 270–350 nm) sources. We studied the potency of TL01 and TL12 radiation to induce edema and sunburn cells (SBC) and to photoisomerize naturally occumng trans- urocanic acid (UCA) to cis -UCA in hairless mouse skin. Cis -UCA has immunosuppressive properties and is a putative mediator of UV-induced suppression of immune responses. For each source, there was UV dose dependence for all three responses. Within the dose ranges used, the potency ratio of TL12: TL01 radiation to induce equivalent edema and SBC was about 6:1. However, the potency ratio to induce cis-IJCA was less than 2.3:1. Therefore, at a given level of edema or SBC induction, TL01 was more efficient than TL12 at UCA photoisomerization. The TL01 induction of immunomodulating cis -UCA, while causing minimal skin injury, may relate to the therapeutic efficacy of this source in skin conditions with an immunological component.  相似文献   

16.
Among the photomorphological responses in plants induced by ultraviolet-B radiation (UVB; 290 nm-320 nm) are leaf asymmetry, leaf thickening and cotyledon curling. We constructed an action spectrum of cotyledon curling in light-grown Brassica napus to characterize the UVB photoreceptor that initiates this response. Cotyledon curling was also characterized in Arabidopsis thaliana. Peak efficiency for this response occurred between 285 and 290 nm. Additionally, UVB-induced changes in epidermal cells from A. thaliana cotyledons were assessed because they are the likely site of UVB photoreception that leads to curling. Investigation of cellular structure, chlorophyll a fluorescence and chlorophyll concentration indicated that cotyledon curling is not concomitant with gross cellular damage or inhibition of photosynthesis, which only occurred in response to wavelengths <280 nm. Many UVB effects are apparently an indirect consequence of UVB radiation, dependent on UVB-mediated increases in reactive oxygen species (ROS) that either act as a signal in the UVB transduction pathway or cause oxidative damage. The cotyledon curling response was impeded by ascorbate and cystine, ROS scavengers and was promoted by H(2)O(2), a ROS. We suggest that following absorption by a UVB chromophore, ROS are generated via photosensitization, ultimately leading to cotyledon curling.  相似文献   

17.
Abstract Although broadband UV-B irradiation has been shown to induce selective immunosuppression in a variety of experimental systems, the wavelength dependence of the immunomodulation and the initial events in the skin remain unclear. In the present study three UV lamps were used at suberythermal doses on C3H mice: a conventional broadband UV-B source (270–350 nm), a narrowband UV-B source (311–312 nm) and a UV-A source (320400 nm). Their effects on the photoisomerization of the naturally occumng trans- isomer of urocanic acid (UCA) to cis- UCA, on the density of Langerhans cells and on the ability of epidermal cells to stimulate allogeneic lymphocytes in the mixed skin lymphocyte reaction (MSLR) were ascertained. Broadband UV-B irradiation was more efficient than narrowband UV-B at reducing the density and function of Langerhans cells, while UV-A irradiation was least effective. These changes were most pronounced immediately following irradiation, were dose dependent and were only detected in UV-exposed areas of skin. There was a close correlation between the UV-induced reduction in Langerhans cell density and the formation of cis -UCA in the epidermis. This correlation was not detected between the reduction in the MSLR response following UV irradiation in vivo and cis-UCA formation.  相似文献   

18.
Many plant species are able to acclimate to changes in ultraviolet-B radiation (UVB) (290-320 nm) exposure. Due to the wide range of targets of UVB, plants have evolved diverse repair and protection mechanisms. These include increased biosynthesis of UVB screening compounds, elevated antioxidant activity and increased rates of DNA repair. We have shown previously that Brassica napus L. cv Topas plants can acclimate quite effectively to environmentally relevant increases in UVB through the accumulation of specific flavonoids in the leaf epidermis. However, B. napus was found to lose other flavonoids when plants are exposed to ultraviolet-A radiation (UVA) (320-400 nm) and/or UVB (Wilson et al. [1998] Photochem. Photobiol. 67, 547-553). In this study we demonstrate that the levels of all the extractable flavonoids in the leaves of B. napus plants are decreased in a dose-dependent manner in response to UVA exposure. Additionally, the accumulation of the extractable flavonoids was examined following a shift from photosynthetically active radiation (PAR) + UVA to PAR + UVB to assess if preexposure to UVA affected UVB-induced flavonoid accumulation. UVA preexposures were found to impede UVB-induced accumulation of some flavonoids. This down regulation was particularly evident for quercetin-3-O-sophoroside and quercetin-3-O-sophoroside-7-O-glucoside, which is interesting because quercetins have been demonstrated to be induced by UVB and correlated with UVB tolerance in some plant species. The photobiological nature of these UVA-mediated effects on flavonoid accumulation implies complex interactions between UVA and UVB responses.  相似文献   

19.
Studies of the photoimmunoprotective properties of sunscreens have produced disparate results. In this study in hairless mice, we compared two UVB absorbers, 2-ethylhexyl-p-methoxycinnamate (2-EHMC) and octyl-N-dimethyl-p-aminobenzoate (o-PABA), individually formulated in a common base lotion with a sunburn protection factor of 6. We measured their capacity to protect against suppression of the contact hypersensitivity (CHS) induced by three daily exposures of the dorsum to 6x the minimal erythemal/edematous dose (MED) of solar-simulated UV radiation (SSUV), in comparison with base lotion-treated mice exposed to 3 x 1 MED of SSUV. All treatments produced a similar minimal erythema. CHS was equally suppressed in mice irradiated through o-PABA and base lotion, but the suppression was significantly reduced in mice irradiated through 2-EHMC. Neither UVB absorber inhibited the epidermal photoisomerization to the immunosuppressive mediator, cis-urocanic acid. However, when mice were treated with exogenous cis-urocanic acid topically on the dorsum, but not when injected subcutaneously on the abdomen, suppression of CHS was observed in o-PABA- and base lotion-treated mice, but not in 2-EHMC-treated mice. Thus, the enhanced immunoprotection in mice irradiated through 2-EHMC apparently resulted from the direct inactivation of epidermal cis-urocanic acid by 2-EHMC. We conclude that comparative assessment of photoimmunoprotection by UV absorbers requires SSUV, erythemally matched exposures and consideration of potential interactions with cutaneous molecules.  相似文献   

20.
Abstract The immunological consequences of exposure to UVA (320–400 nm) radiation are unclear. This study describes the relationship between the generation of epidermal cis -urocanic acid and the ability to respond to a contact-sensitizing agent, in hairless mice exposed to different UV radiation sources, which incorporate successively greater short-wavelength cutoff by filtration of the radiation from fluorescent UV tubes. Mice were exposed to these radiation sources at doses systematically varying in UVB radiation content but supplying increasing proportions of UVA radiation. All radiation sources were found to generate approximately 35% cis -urocanic acid in the epidermis, thus normalizing the sources for cis -urocanic acid production. However, only those sources richest in short-wavelength UVB resulted in suppression of the systemic contact hypersensitivity response. These sources also induced the greatest erythema reaction, measured as its edema component, in the exposed skin. A strong correlation was thus demonstrated between the induction of edema and the suppression of contact hypersensitivity, but there appeared to be no correlation between the generation of epidermal cis-urocanic acid and suppression of contact hypersensitivity. The sources richest in UVA content did not result in suppression of contact hypersensitivity: furthermore mice previously irradiated with such UVA-rich sources were refractory to the immunosuppressive action of exogenous cis-urocanic acid. A protective effect of the increased UVA content thus appeared to be inhibiting immunosuppression by the available endogenously generated or exogenously applied cis-urocanic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号