首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of polyketones containing thiophene links was synthesized by the Friedel-Crafts polymerization of these dithienylalkanes with aromatic diacid chlorides or dicarbonyl chlorides comprising thiophene links with diphenyl compounds. The resulting polymers had inherent viscosities in the range of 0.11–0.27 dL/g and showed poor solubilities to common organic solvents except strong acids. These thiophene-based polyketones exhibited fairly good thermal stabilities. The TGA data revealed 5% weight losses at 375–450°C and residual weights at 500°C were 43–79% under nitorgen. It was found that the thermal stabilities of these polymers were superior to those of polymides or polysulfonamides containing thiophene links and almost comparable to common aromatic polyketones  相似文献   

2.
The polycondensation of aminophenols with diacid chlorides was examined to determine if the amide-ester polymers obtained are random or ordered. All of the evidence obtained points to the conclusion that ordered copolymers indeed are prepared and that a “self-regulating” polymerization process is operating by virtue of the considerably greater reactivity of aromatic amino groups relative to phenol groups. The first step of the reaction involves the in situ preparation of a diphenol-amide which undergoes further condensation. The diphenol-amide intermediate may be isolated or reacted in situ. In addition to the ordered polymer from a given aminophenol and a single diacid chloride, ordered copolymers from two different diacid chlorides were prepared in which the diacid moieties appear in an alternating fashion; the structure of such polymers depends on the order of addition of the diacid chlorides. Corresponding polymers also may be prepared from the preformed diphenol-amide monomers. The molecular weights of certain of the polymers were sufficient for the preparation of films which could be hot-stretched severalfold. Interfacial polycondensations gave polymers of higher inherent viscosities than did solution polymerizations when aminophenols or diphenol-amide monomers were condensed with diacid chlorides.  相似文献   

3.
A series of new poly(1,3,4-oxadiazole-amide)s containing pendent imide groups has been synthesized by solution polycondensation of aromatic diamines containing preformed 1,3,4-oxadiazole rings with two diacid chlorides containing imide rings. These polymers were also prepared by the reaction of the same diacid chlorides with p-aminobenzhydrazide which were subsequently cyclodehydrated in solid state. The polymers were soluble in polar amidic solvents and some of them gave transparent flexible films by casting from solutions. They showed high thermal stability with decomposition temperatures above 400°C and glass transition temperatures in the range of 245–327°C. They had low dielectric constants, in the range of 3.32–3.94, and good tensile properties.  相似文献   

4.
Abstract

Three novel dicarboxylic acids, bis-4,4′-[N-4(4′-hydroxycarbonyl phenyleneoxy) phthalimido] diphenyl sulfone, bis-4,4′-[N-4(4′-hydroxycarbonyl phenyleneoxy) phthalimido] diphenyl methane, and bis-4,4′-[N-4(4′-hydroxycarbonyl phenyleneoxy) phthalimido] diphenyl ether, were synthesized, and several polyesterimides were prepared from diacid chlorides and bisphenols by solution polycondensation. The polymers were obtained in 65–88% yield and had inherent viscosities in the 0.18 to 0.64 dL/g range. The polymers were characterized by IR, elemental analysis, x-ray, TGA, DSC, and solubility tests. All the polymers were readily soluble in polar aprotic solvents and had a 10% weight loss temperature above 375°C in nitrogen.  相似文献   

5.
Regular aliphatic/aromatic copolyoxamides were prepared from diamine-oxamides and aromatic diacid chlorides by interfacial and solution polymerization. Solution polymerization in chloroform or dimethylacetamide is preferred for the preparation of large quantities of polymers but interfacial polymerization is most conveniently carried out for the preparation of polymers with high molecular weight. Aromatic diacid chlorides used included the diacid chlorides of terephthalic acid, isophthalic acid, 2,6-pyridinedicarboxylic acid, two isomeric naphthalene dicarboxylic acids, two cyclo-hexanedicarboxylic acid isomers, as well as 1,1-cyclobutane-dicarboxylic acid. Copolymers of diamine-oxamides with mixtures of acid chlorides of isophthalic and pyridine dicarboxylic acid and isophthalic acid/tetrachloroterephthalic acid have also been prepared. Most polymers are film-forming and are soluble in concentrated sulfuric acid, trifluoroacetic acid, and dimethylacetamide (containing several per cent LiCl). A number of these polymers gave dense or asymmetric membranes, particularly the polymers from ethylene diamine as the aliphatic diamine, particularly poly(iminoethyleneimino-oxalyliminoethyleneiminoisophthaloyl) (p-222I). Diamine oxamides with more than two amide groups in the molecules have been prepared, and in one case polymers with aromatic diacid chlorides have been prepared by interfacial polymerization. All regular aliphatic/aromatic copolyoxamides are high-melting and generally decompose above 350°C without melting. They can, however, be fabricated from solution into brittle fibers or into desalination membranes.  相似文献   

6.
Two series of aromatic poly(1,3,4-oxadiazole-amide)s have been synthesized by low-temperature solution polycondensation reaction of equimolar amounts of aromatic diamines containing preformed oxadiazole rings with diacid chlorides having silicon or hexafluoroisopropylidene groups. These polymers are soluble in polar aprotic solvents and show high thermal stability with decomposition temperature being above 400 °C and glass transition temperature in the range of 250-350 °C. The polyoxadiazole-amides have weight- and number-average molecular weights in the range of 207 000-330 000 and 77 000-131 000, respectively. Conformational parameters of these polymers were calculated by Monte Carlo method with allowance for hindered rotation and discussed in relation with thermal properties. Polymer solutions in NMP were processed into thin free-standing films that showed good mechanical properties with tensile strength in the range of 50-100 MPa, tensile modulus in the range of 2.25-3.56 GPa and elongation to break in the range of 1.65-8.58%.  相似文献   

7.
Block polymers of polystyrene and bisphenol A polycarbonate have been prepared and their bulk viscosities studied as functions of both shear stress and polystyrene block length. The polystyrene blocks were α,ω-diacid chlorides prepared from the reaction of “living” polystyrenes with diacid chlorides. These reactions were studied in order to discover the most effective way of preparing the polystyrene diacid chlorides. The polystyrene diacid chlorides are best prepared by reaction of disodiopolystyrene with phosgene. The flow properties of the block copolymers depend on the composition of the polymers but do not depend on the length of the polystyrene blocks.  相似文献   

8.
Synthesis and characterization of ferrocene‐containing main‐chain polyamides are reported in this article. A new, interesting type of organometallic monomer (FDADO) based on ferrocene was prepared by interfacial condensation of 1,1′‐dichlorocarbonyl ferrocene with 2 mol 1,8‐diamino‐3,6‐dioxaoctane (DADO). A series of ferrocene‐based polyamides was prepared via polycondensation of the ferrocenyl diamine (FDADO) with different diacid chlorides using two different methods. The monomer and polymers were characterized by elemental analysis, infrared and NMR spectroscopy. The thermal stability and behavior of the synthesized polymers were evaluated by thermal gravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA), and differential scanning calorimetry (DSC). The crystallinity of polymers was examined by X‐ray diffraction analysis. Inherent viscosity, solubility and flame‐retardancy of the polymers were also studied. The obtained polymers showed good heat‐resistance and flame‐retardancy, and improved solubility vs generally reported polyamides in some common organic solvents. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Various new fluorinated heterocyclic copolyimides have been synthesized by a polycondensation reaction of a diacid chloride containing imide, hexafluoroisopropylidene and methylene groups with aromatic or heteroaromatic diamines containing preformed phenylquinoxaline or 1,3,4-oxadiazole rings. Other fluorinated heterocyclic copolyimides have been prepared by a polycondensation reaction of the same diacid chloride with aromatic dihydrazides, bis(o-hydroxy-amine)s or a bis(o-carboxy-amine), resulting in intermediate polyhydrazides, poly(o-hydroxy-amide)s or poly(o-carboxy-amide), respectively, which were futher cyclodehydrated to the corresponding polyoxadia zole-imide, polybenzoxazole-imide or polybenzoxazinone-imide structure. These polymers showed good solubility in polar amidic solvents, such as N-methylpyrrolidinone (NMP) and dimethylformamide (DMF), and even in less polar liquids, like tetrahydrofurane or pyridine, except for those compounds containing benzoxazole rings which were less soluble, only on heating in NMP or DMF. The weight average molecular weight measured for tetrahydrofurane-fully-soluble polymers are in the range of 12800–26700 and the polydispersity is in the range of 2–5. All these polymers exhibited good thermal stability, with decomposition temperature being above 350°C, although somewhat lower than that of related polymers prepared by using fully aromatic diacid chlorides instead of the present ones containing methylene units. The glass transition temperature is in the range of 200–300°C. The dielectric constant measured for polymer films is in the range of 3.3–3.7. Tensile strength is in the range of 35–70 MPa, elongation to break between 30–40% and tensile modulus in the range of 170–330 MPa. A study of the relation between conformational parameters and properties of some of these polymers has been carried out by using the Monte Carlo method with an allowance for hindered rotation, and the values were compared with the experimental data and discussed in relation with the rigidity of the chains. The present polymers are potential candidates for use as high performance materials.  相似文献   

10.
Linear polyaryl(ether ketones) containing tert-butyl pendent groups were prepared from aromatic hydrocarbons and aromatic diacid chlorides, both classes of monomers containing tert-butyl pendent groups. The polymers were prepared in high yield and high molecular weight by low-temperature precipitation polycondensation in 1,2-dichloroethane. The presence of meta-oriented moieties and bulky pendent groups played a beneficial role with regard to solubility, while the thermal transitions and thermal resistance were not greatly impaired relative to conventional all para-oriented polyaryl(ether–ketones). The current polyaryl(ether–ketones) showed glass transition temperatures in the range 170–240°C and decomposition temperatures, as measured by TGA, of about 500°C. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1251–1256, 1998  相似文献   

11.
Thermostable heterocyclic polymers containing phenyl-substituted quinoxaline and both amide and imide units have been synthesized by low-temperature solution polycondensation of diaminophenyl-quinoxalines with diacid chlorides of certain aromatic acids containing preformed imide rings. Also, copolymers have been obtained in which a mixture of diaminophenylquinoxaline and diaminooxadi-azole or diaminobenzimidazole was used in the reaction with the same diacid chlorides. The thermal stability and the electrical insulating properties of these products are discussed and compared with related heterocyclic polymers.  相似文献   

12.
A series of new methyl substituted poly(ether-amide)s were synthesized by using direct Yamazaki’s phosphorylative polycondensation of novel diacid 1,1-bis[4-(4-carboxymethyl phenoxy)-3-methylphenyl] cyclopentane (BCMMP) with various aromatic diamines. These polymers were characterized by FTIR spectroscopy. Inherent viscosities of these polymers were in the range 0.25 to 0.42 dL/g indicating moderate molecular weight built-up. These polymers exhibited excellent solubility in various polar aprotic solvents such as NMP, DMSO, DMAc, DMF, pyridine, and were insoluble in THF, DCM and chloroform. X-Ray diffraction pattern of polymers showed that incorporation of methyl substituent on aromatic backbone and cardo cyclopentylidene moiety containing ether linkage and methylene spacer would disturb the chain regularity and packing, leading to amorphous nature. Thermal analysis by TGA showed excellent thermal stability of polymers. The glass transition temperature Tg were in the range 195–210°C. The structure-property correlation among this poly(ether-amide)s was studied, in view of these polymer’s potential applications as high performance polymers.  相似文献   

13.
1,2-Bis(p-aminophenyl)tetramethyldisilane was synthesized from 1,2-dichlorotetramethyldisilane and 4-[N,N-bis(trimethylsilyl)amino]phenyllithium. The diamine was reacted with various aromatic diacid chlorides giving disilane-containing aromatic polyamides (aramids), whose inherent viscosities were between 0.27 and 0.70 dL/g, depending on the diacid chlorides used. The aramids had glass transition temperatures between 194 and 255°C. No weight loss was observed below 350°C. Some of the polymers were found to be semicrystalline based on their x-ray diffractograms. The aramid films showed a strong ultraviolet (UV) absorption at 287 nm, which decreased during irradiation with UV light, suggesting that cleavage of the silicon-silicon bond in the aramid backbone occurs. A decrease in the inherent viscosity and molecular weight of the soluble aramid derived from phenylindanedicarbonyl chloride was also observed by irradiation with UV light.  相似文献   

14.
Polyesters were made with aromatic diacid chlorides and 4,4,-thiodiphenol. Isophthaloyl chloride and/or terephthaloyl chloride were used as acid chlorides alone or together with 5-cyanoisophthaloyl chloride or [2.2]p-cyclophane-3,9-dicarboxylic acid chloride. The latter components were incorporated in order to make the polymers useful for crosslinking. A polyether could be obtained by polycondensation of 2,4-dichloro-benzonitrile and 4,4′-thiodiphenol. The polycondensations were run in nitrobenzene as solvent.  相似文献   

15.
A novel aromatic triol was synthesized and polycondensed with various diacid chlorides resulting in the preparation of a series of hydroxy-terminated hyperbranched polyamide-esters without gelation. Structure and degree of branching of the ensuing polymers were confirmed by FTIR, 1H and 13C NMR analyses. These thermally stable polymers were found to be soluble in aprotic solvents. Inherent viscosities and Tg values lie in the range of 0.15-0.21 dL/g and 74-112 °C, respectively.  相似文献   

16.
Monomers and polymers of 2-benzylidene-1,3-dithioles (dithiafulvenes) were synthesized. Polymerization of substituted dithiafulvenes with diacid chlorides, p-phenylene diisocyanate, or terephthalaldehyde yielded yellow polymers with inherent viscosities ranging from 0.10 to 0.21 dL/g.  相似文献   

17.
New heterocyclic polyamides have been synthesized by solution polycondensation of aromatic diamines containing phenylquinoxaline units with diacid chlorides having both imide and hexafluoroisopropylidene (6F) groups. These polymers are soluble in polar aprotic solvents, such as N-methylpyrrolidone (NMP) or N, N-dimethylformamide (DMF), and can be cast into flexible thin films from solutions. They show high thermooxidative stability with decomposition temperatures above 400°C and glass transition temperatures in the range of 225-300°C. The polymer films exhibit good chemical resistance towards diluted acids and good electrical insulating properties with dielectric constants in the range of 3.2–3.7.  相似文献   

18.
Novel aromatic-aliphatic poly(amide-imide)s containing chiral units in the main chain and hydroxyl benzamide units in the side chain have been obtained from the step-growth polymerization of 3,5-diamino-N-(4-hydroxyphenyl) benzamide(2) with different chiral diacid chlorides(1a-1e).Theoretical calculations were done by means of computational chemistry methods to narrate the stable conformation and orientation of each diacid chloride monomers under reaction conditions.These polymers were characterized by conventional techniques.The resulting polymers show good thermal stability.Other physical properties of polymers including crystallinity,inherent viscosity and morphological characteristics were also studied.  相似文献   

19.
A new diamine was prepared via reaction between 8-hydroxy-5-nitroquinoline and 4-nitrobenzoyl chloride, followed by reduction of the nitro groups of the resulted compound. Novel quinoline-based poly(ester-amide)s were produced through polycondensation reactions of the prepared diamine with different diacid chlorides. The monomer and poly(ester-amide)s were characterized and properties of the polymers including solution viscosity, thermal behavior and stability, solubility, and crystallinity were studied.

High thermal stability and improved solubility was observed for the polymers, indicating successful designing of monomer and related polymers for overcoming the main issue of thermally stable polymers, i.e. the problem of increasing solubility versus high thermal stability.

Also, by changing the diacid chlorides for the preparation of poly(ester-amide)s, the structure-property relations were investigated.  相似文献   

20.
Wholly aromatic ordered copolyamides of unusually high thermal stability were prepared by the condensation of aromatic diacid chlorides with symmetrical diamines containing preformed aromatic amide units in an ordered arrangement. The preservation of order in the condensation step was assured by using interfacial or solution polymerization techniques at temperatures below 50°C. Each polymer contains units derived from aminobenzoic acids, arylene diamines, and arylene diacids. By use of para- and meta- phenylene units, eight different polymers are possible; all were prepared. Differential thermal analyses and thermogravimetric analyses showed these polymers to have melting points or decomposition temperatures in a range from 410°C. for the all-meta polymer to 555°C. for the all-para one. Substitution of the internal N-hydrogens of the diamines with methyl groups or phenyl groups leads to additional ordered copolymers. Several were prepared, but their melting points were much lower than those of the parent polymers limiting their usefulness in high temperature applications. Tough pliable films were prepared from all eight unsubstituted polymers, and crystalline fibers with tenacities of ca. 6 g./den. were prepared from three of the polymers. The properties of the fibers were retained to a high degree even when determined at temperatures up to 400°C. Fibers aged at 300°C. for extended periods of time showed remarkable retention of fiber properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号