首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of AB and ABA block copolymers of pDEGMEMA-b-pCHMA and pCHMA-b-pDEGMEMA-b-pCHMA cyclohexyl methacrylate (CHMA) and di(ethylene glycol) methyl ether methacrylate (DEGMEMA) with Mn ranging between 18,000 and 50,000 g mol−1 and PDI = 1.09-1.32 were prepared via copper(I) mediated living radical polymerization with pyridylmethanimine ligands. Aggregation properties were investigated using a combination of 1H NMR, dynamic and static light scattering. For comparative purposes poly(CHMA) and poly(DEGMEMA) homopolymers were prepared. The CAC values estimated for the di- and triblock copolymers soluble in cyclohexane are lower than 0.005 g L−1 whereas the values found for block copolymers in methanol solutions are less than 0.070 g L−1. DLS analysis showed the presence of micellar aggregates with diameters ranging from 25 to 40 nm with particle polydispersity indexes between 0.003 and 0.183. The pCHMA-b-pDEGMEMA-b-pCHMA micelles solubilized the aqueous phase in petrol/gasoline. The block copolymer-based micelles incorporate water within their hydrophilic domains, potentially overcoming a number of practical problems such as the formation of biphasic mixtures in solvent blends due to undesired water accumulation.  相似文献   

2.
2-Dimethylaminoethyl methacrylate (DMAEMA) and 2-diethylaminoethyl methacrylate (DEAEMA) block copolymers have been synthesized by using poly(ethylene glycol), poly(tetrahydrofuran) (PTHF) and poly(ethylene butylenes) macroinitiators with copper mediated living radical polymerization. The use of difunctional macroinitiator gave ABA block copolymers with narrow polydispersities (PDI) and controlled number average molecular weights (Mn’s). By using DMAEMA, polymerizations proceed with excellent first order kinetics indicative of well-controlled living polymerization. Online 1H NMR monitoring has been used to investigate the polymerization of DEAEMA. The first order kinetic plots for the polymerization of DEAMA showed two different rate regimes ascribed to an induction period which is not observed for DMAEMA. ABA triblock copolymers with DMAEMA as the A blocks and PTHF or PBD as B blocks leads to amphiphilic block copolymers with Mn’s between 22 and 24 K (PDI 1.24-1.32) which form aggregates/micelles in solution. The critical aggregation concentrations, as determined by pyrene fluorimetry, are 0.07 and 0.03 g dm−1 for PTHF- and PBD-containing triblocks respectively.  相似文献   

3.
Asymmetric poly(styrene-b-methyl methacrylate) (PS-b-PMMA) diblock copolymers of molecular weight Mn = 29,700 g mol−1 (MPS = 9300 g mol−1MPMMA = 20,100 g mol−1, PD = 1.15, χPS = 0.323, χPMMA = 0.677) and Mn = 63,900 g mol−1 (MPS = 50,500 g mol−1, MPMMA = 13,400 g mol−1, PD = 1.18, χPS = 0.790, χPMMA = 0.210) were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. Atomic force microscopy (AFM) was used to investigate the surface structure of thin films, prepared by spin-coating the diblock copolymers on a silicon substrate. We show that the nanostructure of the diblock copolymer depends on the molecular weight and volume fraction of the diblock copolymers. We observed a perpendicular lamellar structure for the high molar mass sample and a hexagonal-packed cylindrical patterning for the lower molar mass one. Small-angle X-ray scattering investigation of these samples without annealing did not reveal any ordered structure. Annealing of PS-b-PMMA samples at 160 °C for 24 h led to a change in surface structure.  相似文献   

4.
Poly(methyl methacrylate)s with terminal bromine atom, prepared by bromination of anionically polymerized MMA, were used as ATRP macroinitiators giving di- and triblock copolymers with MMA, styrene and butyl acrylate blocks. Multifunctional ATRP macroinitiators were synthesized by introducing bromomethyl or 2-bromoacyloxy groups onto the main chain of polystyrene or poly(4-methyl styrene) and used for ATRP grafting of tert-butyl acrylate leading to densely grafted copolymers with more or less uniform grafts.  相似文献   

5.
This study describes the miscibility phase behavior in two series of biodegradable triblock copolymers, poly(l-lactide)-block-poly(ethylene glycol)-block-poly(l-lactide) (PLLA-PEG-PLLA), prepared from two di-hydroxy-terminated PEG prepolymers (Mn = 4000 or 600 g mol−1) with different lengths of poly(l-lactide) segments (polymerization degree, DP = 1.2-145.6). The prepared block copolymers presented wide range of molecular weights (800-25,000 g mol−1) and compositions (16-80 wt.% of PEG). The copolymer multiphases coexistance and interaction were evaluated by DSC and TGA. The copolymers presented a dual stage thermal degradation and decreased thermal stability compared to PEG homopolymers. In addition, DSC analyses allowed the observation of multiphase separation; the melting temperature, Tm, of PLLA and PEG phases depended on the relative segment lengths and the only observed glass transition temperature (Tg) in copolymers indicated miscibility in the amorphous phase.  相似文献   

6.
Transition metal mediated living radical polymerisation of butyl methacrylate has been demonstrated with a copper(I) halide N-alkyl-2-pyridylmethanimine ligands based catalyst. Optimum conditions were found to be with copper(I) chloride and N-octyl-2-pyridylmethanimine catalyst at 65 °C where conversions of 85% were achieved with polymers of Mn = 8900 g mol−1 (theoretical = 8400 g mol−1) and PDI = 1.23. Both non-ionic and ionic surfactants were employed which were also made by living radical polymerisation. The non-ionic surfactant was a block copolymer of PMMA from a polyethyleneglycol macroinitiator (total Mn = 7600 g mol−1, PDI = 1.20) and the ionic surfactant PDMEAMA-PMMA (total Mn = 8000 g mol−1, PDI = 1.21) with the PDMEAMA block quaternized with MeI (13.8%, 28.4%, 47.7% and 100%). A range of ligands were employed in the suspension polymerisation by varying the alkyl group on the ligand increasing the hydrophobicity (alkyl = propyl (PrMI), pentyl (PMI), octyl (OMI), dodecyl (DMI) and octadecyl (ODMI)). The more hydrophobic ligands were found to be more effective due to lower partitioning into the aqueous phase. Block copolymers of P(EMA)-P(BMA) and P(MMA)-P(BMA) were prepared by first preparing macroinitiators via living radical polymerisation (Mn = 1600 g mol−1 (PDI = 1.23) for P(EMA) and Mn = 1500 g mol−1 (PDI = 1.22) for P(MMA)) and using them for initiation of BMA in suspension polymerisation. Block copolymers had Mn between 12,800 and 13,700 g mol−1 with PDI between 1.33 and 1.54. Block copolymer growth showed excellent linear first order kinetics wrt monomer and demonstrated characteristics expected of a living radical polymerisation. Particle sizes were measured by SEM and DLS with good agreement (1.4-2.8 μm) and SEM showed spherical particles were formed.  相似文献   

7.
Well-defined poly(MMA-b-DMS-b-MMA) triblock copolymers were prepared by copper(I) mediated living radical polymerization. This was achieved by polymerization of methylmethacrylate (MMA) with different concentrations of 2-bromoisobutyrate terminated polydimethylsiloxane (PDMS). The polymerization occurred in controlled manner with the molecular weight found by 1H NMR close to that predicted and a narrow molecular weight distribution (Mw/Mn∼1.2). Copolymers were obtained with Mn=2100, 4900, 10 100 and 29 500 g mol−1 respectively with poly(MMA) (PMMA) terminal blocks and a central PDMS block of 5500 g mol−1 in each case.DSC analysis showed most of the poly(MMA-b-DMS-b-MMA) triblock copolymers exhibits two Tg’s, one at low temperature corresponding to the Tg of PDMS microphase and a second at high temperature corresponding to the Tg of the PMMA microphase. TEM images show microphase segregation morphology in bulk for the triblock copolymers, with a higher degree of segregation for copolymers containing higher PDMS content. XPS measurements were performed to determine the chemical composition at the surface. For all the copolymers PDMS enrichment is observed at the surface. Copolymers containing higher percentage of PDMS exhibit higher phase separation and better enrichment of PDMS at the surface. The surface tension determined by contact angle measurements of the copolymer film containing 59 mol% of PDMS was 19.15 mN m−1.  相似文献   

8.
Two linear triblock copolymers poly(t-butyl methacrylate-b-2-hydroxyl ethyl methacrylate-b-N,N-dimethylaminoethyl methacrylate) (PtBMA97-b-PHEMA18-b-PDMAEMA98) and poly(t-butyl methacrylate-b-glycidyl methacrylate-b-styrene) (PtBMA137-b-PGMA23-b-PSt156) were controlled synthesized with living RAFT polymerization technique under the chain transfer of cumyl dithiobenzoate. The results of FT-IR spectra illustrate that the characteristic groups of copolymer fit well with the result of 1H-NMR, which successfully determines the corresponding molecular structure of triblock copolymers. The thermal stability of PtBMA-b-PGMA-b-PSt and PtBMA-b-PHEMA-b-PDMAEMA was also complementarily explained by the activation energy of thermal decomposition from Friedman differential method and Ozawa–Flynn–Wall integral method. The results show that the degradation energy of the former copolymer was much higher than that of the latter copolymer, because the aromatic groups were introduced into the polymer segments of the former copolymer during the RAFT polymerization process, and the other reason is the oxirane rings are typically reactive which they occurred intermolecular crosslinking reaction during the thermal decomposition.  相似文献   

9.

A series of polyacrylate‐polystyrene‐polyisobutylene‐polystyrene‐polyacrylate (X‐PS‐PIB‐PS‐X) pentablock terpolymers (X=poly(methyl acrylate) (PMA), poly(butyl acrylate) (PBA), or poly(methyl methacrylate) (PMMA)) was prepared from poly (styrene‐b‐isobutylene‐b‐styrene) (PS‐PIB‐PS) block copolymers (BCPs) using either a Cu(I)Cl/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) or Cu(I)Cl/tris[2‐(dimethylamino)ethyl]amine (Me6TREN) catalyst system. The PS‐PIB‐PS BCPs were prepared by quasiliving carbocationic polymerization of isobutylene using a difunctional initiator, followed by the sequential addition of styrene, and were used as macroinitiators for the atom transfer radical polymerization (ATRP) of methyl acrylate (MA), n‐butyl acrylate (BA), or methyl methacrylate (MMA). The ATRP of MA and BA proceeded in a controlled fashion using either a Cu(I)Cl/PMDETA or Cu(I)Cl/Me6TREN catalyst system, as evidenced by a linear increase in molecular weight with conversion and low PDIs. The polymerization of MMA was less controlled. 1H‐NMR spectroscopy was used to elucidate pentablock copolymer structure and composition. The thermal stabilities of the pentablock copolymers were slightly less than the PS‐PIB‐PS macroinitiators due to the presence of polyacrylate or polymethacrylate outer block segments. DSC analysis of the pentablock copolymers showed a plurality of glass transition temperatures, indicating a phase separated material.  相似文献   

10.
ABCBA‐type pentablock copolymers of methyl methacrylate (MMA), styrene (S), and isobutylene (IB) were prepared by a three‐step synthesis, which included atom transfer radical polymerization (ATRP) and cationic polymerization: (1) poly(methyl methacrylate) (PMMA) with terminal chlorine atoms was prepared by ATRP initiated with an aromatic difunctional initiator bearing two trichloromethyl groups under CuCl/2,2′‐bipyridine catalysis; (2) PMMA with the same catalyst was used for ATRP of styrene, which produced a poly(S‐b‐MMA‐b‐S) triblock copolymer; and (3) IB was polymerized cationically in the presence of the aforementioned triblock copolymer and BCl3, and this produced a poly(IB‐b‐S‐b‐MMA‐b‐S‐b‐IB) pentablock copolymer. The reaction temperature, varied from ?78 to ?25 °C, significantly affected the IB content in the product; the highest was obtained at ?25 °C. The formation of a pentablock copolymer with a narrow molecular weight distribution provided direct evidence of the presence of active chlorine at the ends of the poly(S‐b‐MMA‐b‐S) triblock copolymer, capable of the initiation of the cationic polymerization of IB in the presence of BCl3. A differential scanning calorimetry trace of the pentablock copolymer (20.1 mol % IB) showed the glass‐transition temperatures of three segregated domains, that is, polyisobutylene (?87.4 °C), polystyrene (95.6 °C), and PMMA (103.7 °C) blocks. One glass‐transition temperature (104.5 °C) was observed for the aforementioned triblock copolymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6098–6108, 2004  相似文献   

11.
Copper(I)‐mediated living radical polymerization was used to synthesize amphiphilic block copolymers of poly(n‐butyl methacrylate) [P(n‐BMA)] and poly[(2‐dimethylamino)ethyl methacrylate] (PDMAEMA). Functionalized bromo P(n‐BMA) macroinitiators were prepared from monofunctional, difunctional, and trifunctional initiators: 2‐bromo‐2‐methylpropionic acid 4‐methoxyphenyl ester, 1,4‐(2′‐bromo‐2′‐methyl‐propionate)benzene, and 1,3,5‐(2′‐bromo‐2′‐methylpropionato)benzene. The living nature of the polymerizations involved was investigated in each case, leading to narrow‐polydispersity polymers for which the number‐average molecular weight increased fairly linearly with time with good first‐order kinetics in the monomer. These macroinitiators were subsequently used for the polymerization of (2‐dimethylamino)ethyl methacrylate to obtain well‐defined [P(n‐BMA)xb‐PDMAEMAy]z diblock (15,900; polydispersity index = 1.60), triblock (23,200; polydispersity index = 1.24), and star block copolymers (50,700; polydispersity index = 1.46). Amphiphilic block copolymers contained between 60 and 80 mol % hydrophilic PDMAEMA blocks to solubilize them in water. The polymers were quaternized with methyl iodide to render them even more hydrophilic. The aggregation behavior of these copolymers was investigated with fluorescence spectroscopy and dynamic light scattering. For blocks of similar comonomer compositions, the apparent critical aggregation concentration (cac = 3.22–7.13 × 10?3 g L?1) and the aggregate size (ca. 65 nm) were both dependent on the copolymer architecture. However, for the same copolymer structure, increasing the hydrophilic PDMAEMA block length had little effect on the cac but resulted in a change in the aggregate size. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 439–450, 2002; DOI 10.1002/pola.10122  相似文献   

12.
Atom transfer radical polymerization of methyl methacrylate initiated by a poly(oxyethylene) macroinitiator by the esterification of PEG 1500 with 2-chloro propionyl chloride was synthesized. These polymerization proceeds both in bulk and solution with a quantitative initiation efficiency, leading to A-B-A triblock copolymers. The macroinitiators and their block copolymers were characterized by FT-IR, FT-NMR and GPC analyses. In bulk polymerization, the kinetic study showed that the relationship between ln[M]0/[M] vs time was linear showing that there is a constant concentration of active species throughout the polymerization and follow the first order kinetics with respect to monomer. Moreover, the experimental molecular weight of the block copolymers increased linearly with the monomer conversion and the polydispersity index remained between 1.3 and 1.5 throughout the polymerization. No formation of homo poly(methyl methacrylate) could also be detected, and all this confirms that the bulk polymerization proceeds in a controlled/“living” manner.  相似文献   

13.
Summary: A novel combinatorial, high-throughput experimentation (HTE) setup has been developed, which allows for rapid mapping of the phase behavior of blends of homopolymers and block copolymers. The principle is based on the preparation of composition (ϕ)-temperature (T) gradient films. Linear ϕ gradients were obtained over a large composition range, as shown by FTIR microscopy. The applicability of this combinatorial approach was demonstrated by studying the phase behavior of a poly(styrene-co-acrylonitrile) (SAN)/poly(methyl methacrylate-co-ethyl acrylate) (PMMA-EA) blend with varying EA content and a poly(styrene-b-butadiene-b-methyl methacrylate) (SBM) triblock copolymer.  相似文献   

14.
Well-defined amphiphilic block copolymers composed of hydrophilic and hydrophobic blocks linked through an acid-labile acetal bond were synthesized directly by RAFT polymerization using a new poly(ethylene glycol) (PEG) macroRAFT agent modified with an acid-labile group at its R-terminal. The new macroRAFT agent was used for polymerization of poly(t-butyl methacrylate) (PtBMA) or poly(cholesterol-methacrylate) (PCMA) to synthesize well-defined block copolymers with a PEG block sheddable under acidic conditions. The chain extension polymerization kinetics showed known traits of RAFT polymerization. The molecular weight distributions of the copolymers prepared using the new macroRAFT agent remained below 1.2 during the polymerizations and the molecular weight of the copolymers was linearly proportional to monomer conversions. The acid-catalyzed hydrolysis behavior of the PEG-macroRAFT agent and the PEG-b-PtBMA (Mn = 13,600 by GPC, PDI = 1.10) was studied by GPC, 1H NMR and UV–vis spectroscopy. The half-life of acid-hydrolysis was 70 min at pH 2.2 and 92 h at pH 4.0. The potential use of the pH-labile shedding behavior of the copolymers was demonstrated by conjugating a thiol-modified siRNA to ω-pyridyldisulfide modified PEG-b-PCMA. The resultant PEG-b-PCMA-b-siRNA triblock modular polymer released PCMA-b-siRNA segment in acidic and siRNA segment in reductive conditions, as confirmed by polyacrylamide gel electrophoresis.  相似文献   

15.
The photolytic and photocatalytic degradation of the copolymers poly(methyl methacrylate-co-butyl methacrylate) (MMA-BMA), poly(methyl methacrylate-co-ethyl acrylate) (MMA-EA) and poly(methyl methacrylate-co-methacrylic acid) (MMA-MAA) have been carried out in solution in the presence of solution combustion synthesized TiO2 (CS TiO2) and commercial Degussa P-25 TiO2 (DP 25). The degradation rates of the copolymers were compared with the respective homopolymers. The copolymers and the homopolymers degraded randomly along the chain. The degradation rate was determined using continuous distribution kinetics. For all the polymers, CS TiO2 exhibited superior photo-activity compared to the uncatalysed and DP 25 systems, owing to its high surface hydroxyl content and high specific surface area. The time evolution of the hydroxyl and hydroperoxide stretching vibration in the Fourier transform-infrared (FT-IR) spectra of the copolymers indicated that the degradation rate follows the order MMA-MAA > MMA-EA > MMA-BMA. The same order is observed for the rate coefficients of photocatalytic degradation. The photodegradation rate coefficients were compared with the activation energy of pyrolytic degradation. In degradation by pyrolysis, it was observed that MMA-BMA was the least stable followed by MMA-EA and MMA-MAA. The observed contrast in the order of thermal stability compared to the photo-stability of these copolymers was attributed to the two different mechanisms governing the scission of the polymer and the evolution of the products.  相似文献   

16.
N-n-Propyl-2-pyridylmethanimine, 1, N-n-octyl-2-pyridylmethanimine, 2, N-n-lauryl-2-pyridylmethanimine, 3, and N-n-octadecyl-2-pyridylmethanimine, 4 have been used in conjunction with copper(II) bromide and azo initiators for the reverse atom transfer radical polymerisation of a range of methacrylates. AIBN to CuIIBr2 ratios of 0.5:1, 0.75:1 and 1:1 give PMMA with Mn 11 500 g mol−1 (PDi = 1.24) (at 22% conversion), 12 500 g mol−1 (PDi = 1.06) (at 83% conversion) and 10 900 g mol−1 (PDi = 1.11) (at 84% conversion), respectively. A CuIIBr2 complex is demonstrated to be needed at the start of the reaction for good control over molecular weight and polydispersity as reactions using Cu(I)Br as catalyst yielded PMMA of Mn 31 000 g mol−1 (PDi = 2.90), reactions with no copper yield PMMA of Mn 33 000 g mol−1 (PDi = 2.95). The RATRP of styrene was carried out using CuIIBr2 as catalyst. AIBN to CuIIBr2 ratio of 0.5:1, 0.75:1 and 1:1 gave PS with Mn = 12 400 g mol−1 (PDi = 1.27) at low conversion, Mn = 15 500 g mol−1 (PDi = 1.11) and 12 400 g mol−1 (PDi = 1.38), respectively at ∼85% conversion. A series of block copolymers of MMA with BMA, BzMA and DMEAMA (15 600 g mol−1 (PDi = 1.18), 13 300 g mol−1 (PDi = 1.14) 15 300 g mol−1 (PDi) = 1.16), using a PMMA macroinitiator were prepared. Emulsion polymerisation of MMA using [initiator]:[Cu(II)Br2] ratio = 0.5:1 with Brij surfactant gave a linear increase of Mn with respect to conversion, final Mn = 112 800 g mol−1 (PDi = 1.42). Further reactions were carried out with [initiator]:[Cu(II)Br2] ratio = 0.75:1 and 1:1. Both giving PMMA with Mn ∼ 32 000 g mol−1 (PDi ∼ 2.4). These reactions exhibit no control, this is because the azo initiator is present in excess and all of the monomer is consumed by a free radical polymerisation as opposed to a controlled reaction. Particle size analysis (DLS) showed the particle size between 160 and170 nm in all cases.  相似文献   

17.
 Small-angle neutron scattering experiments were made on poly(methyl methacrylate-block-sodium acrylate-block-methyl methacrylate) [p(MMA-b-NaA-b-MMA)] and p(NaA-b-MMA-b-NaA) solutions by varying the composition and the concentration of the polymer with and without 1 M NaCl added. Scattering curves could be evaluated by assuming that the polymers aggregate into polydisperse micelles. The experiments support the expectation that in the case of the p(MMA-b-NaA-b-MMA) block sequence the hydrophilic blocks form closed loops connected by both ends to the micellar cores; in the case of the p(NaA-b-MMA-b-NaA) block sequence they float freely in the solvent. The micellar cores exert considerable stability against dilution and added electrolyte. The interaction of charged micelles could be formally described in terms of volume exclusion and the Derjaguin–Landau–Verwey–Overbeek potential. Received: 20 December 2000 Accepted: 18 August 2001  相似文献   

18.
The triblock copolymers, poly(styrene-b-isoprene-b-ε-caprolactone)s (PS-b-PI-b-PCL) have been synthesized successfully by combination of anionic polymerization and ring-opening polymerization. Diblock copolymer capped with hydroxyl group, PS-b-PI-OH was synthesized by sequential anionic polymerization of styrene and isoprene and following end-capping reaction of EO, and then it was used as macro initiator in the ring-opening polymerization of CL. The results of DSC and WAXD show big effect of amorphous PS-b-PI on the thermal behaviors of PCL block in the triblock copolymers and the lower degree of crystalline in the triblock copolymer with higher molecular weight of PS-b-PI was observed. The real-time observation on the polarized optical microscopy shows the spherulite growth rates of PCL27, PCL328 and PS-b-PI-b-PCL344 are 0.71, 0.46 and 0.07 μm s−1, respectively. The atomic force microscopy (AFM) images of the PS90-b-PI66-b-PCL28 show the columns morphology formed by it’s self-assembling.  相似文献   

19.
Graft copolymers with the main polyimide chain and side chains of poly(n-butyl acrylate), poly(tert-butyl acrylate), poly(methyl methacrylate), poly(tert-butyl methacrylate), polystyrene, and polystyrene-block-poly(methyl methacrylate) were synthesized by atom transfer radical polymerization on the multicenter polyimide macroinitiators in the presence of the halide complexes of univalent copper with nitrogen-containing ligands. Polymerization of metha-crylates is most efficiently developed on the polyimide macroinitiators. The obtained graft copolymers initiate the secondary polymerization (“post-polymerization”) of methyl methacrylate. The conditions of detachment of side chains of graft polymethacrylates that do not involve the ester groups of their monomeric units were found. The molecular mass characteristics of the graft copolymers and isolated polymers, being the detached side chains of the copolymers, were determined. The detached side chains of different chemical structures have low values of the polydispersity index. The procedure developed was used for the preparation of new graft polyimides with side chains of poly-4-nitro-4′-[N-methylacryloyloxyethyl-N′-ethyl]amino-azobenzene that cause the nonlinear optical properties and with the side chains of poly(N,N-dimethylaminoethyl methacrylate) that cause the thermosensitive properties of the copolymers.  相似文献   

20.
This contribution describes the polymerization of 2,2,6,6‐tetramethylpiperidin‐4‐yl methacrylate by atom transfer radical polymerization (ATRP). Different catalytic systems are compared. The CuCl/4,4′‐dinonyl‐2,2′‐dipyridyl catalytic system allows a good control over the polymerization and provides polymers with a polydispersity index below 1.2. The successful polymerization of styrene from PTMPM‐Cl macroinitiators by ATRP is then demonstrated. Successful quantitative oxidation of PTMPM‐b‐PS block copolymers leads to poly(2,2,6,6‐tetramethylpiperidinyloxy‐4‐yl‐methacrylate)‐b‐poly(styrene) (PTMA‐b‐PS). The cyclic voltammogram of PTMA‐b‐PS indicates a reversible redox reaction at 3.6 V (vs. Li+/Li). Such block copolymers open new opportunities for the formation of functional organic cathode materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号