首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
阎虎生 《高分子科学》2013,31(2):294-301
Single-hole hollow polymer nanospheres were fabricated by raspberry-like template method using "graft-from" strategy through atom transfer radical polymerization (ATRP). Nanometer-sized silica spheres were covalently attached onto the surfaces of micrometer-sized silica spheres. Crosslinked polymer shells on the nano-sized spheres outside the attached area were formed by "graft-from" strategy through ATRP. After removal of the silica cores, single-hole hollow crosslinked polymer nanospheres were obtained. In this strategy, most of ATRP monomers may be used and thus many functional groups can be easily incorporated into the single-hole hollow crosslinked polymer nanospheres.  相似文献   

2.
Synthetic polymers have been occasionally applied to the consolidation and protection of paper and cellulose-based textiles especially when traditional conservation methods were not sufficient to improve the mechanical resistance of the degraded artefacts. In this paper, the potential of the innovative technique of grafting polymerisation with synthetic polymers was investigated to prevent biodeterioration. Cotton, linen and Whatman paper were consolidated by a) coating Paraloid B72®, b) coating ethyl acrylate/methyl methacrylate (EA/MMA) preformed copolymer, and c) grafting onto cellulose chains EA and MMA monomers in the ratio 75/25. All the samples were artificially biodeteriorated to obtain biodegraded model samples of both consolidated and non-consolidated substrates, according to the ASTM G21-96(2002) “Standard Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi”. The consolidating effect was examined evaluating the mechanical behaviour of the grafted and coated samples, before and after the artificial biodeterioration. In addition, SEM observations were applied to monitor both the grafting level and the biodeterioration of the samples. With the grafting of acrylic monomers, the mechanical strength of cellulose-based textiles and paper was greatly improved, as well as the resistance to biological agents. Therefore, with regards to biodeterioration, the graft copolymer EA/MMA (75/25 wt) was proved to be a suitable method to help prevent possible deterioration of paper and textiles.  相似文献   

3.
Carbon dots (CDs) have been used for the first time as a sensitizer to initiate and activate free radical and controlled radical polymerization, respectively, based on an ATRP protocol with blue LEDs. Consideration of diverse heteroatom‐doped CDs indicated that N‐doped CDs could serve as an effective photocatalyst and photosensitizer in combination with LEDs emitting either at 405 nm or 470 nm. Free radical polymerization was initiated by combining the CDs with an iodonium or sulfonium salt in tri(propylene glycol) diacrylate. Polymerization of methyl methacrylate (MMA) by photo‐induced ATRP was achieved with CDs and ethyl α‐bromophenylacetate using CuII as catalyst in the ppm range. The polymers obtained showed temporal control, narrower dispersity ?1.5, and chain‐end fidelity. The first‐order kinetics and ON/OFF experiments additionally gave evidence of the constant concentration of polymer radicals. No remarkable cytotoxic activity was observed for the CDs, underlining their biocompatibility.  相似文献   

4.
This article reports the synthesis of the block and graft copolymers using peroxygen‐containing poly(methyl methacrylate) (poly‐MMA) as a macroinitiator that was prepared from the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in the presence of bis(4,4′‐bromomethyl benzoyl peroxide) (BBP). The effects of reaction temperatures on the ATRP system were studied in detail. Kinetic studies were carried out to investigate controlled ATRP for BBP/CuBr/bpy initiating system with MMA at 40 °C and free radical polymerization of styrene (S) at 80 °C. The plots of ln ([Mo]/[Mt]) versus reaction time are linear, corresponding to first‐order kinetics. Poly‐MMA initiators were used in the bulk polymerization of S to obtain poly (MMA‐b‐S) block copolymers. Poly‐MMA initiators containing undecomposed peroygen groups were used for the graft copolymerization of polybutadiene (PBd) and natural rubber (RSS‐3) to obtain crosslinked poly (MMA‐g‐PBd) and poly(MMA‐g‐RSS‐3) graft copolymers. Swelling ratio values (qv) of the graft copolymers in CHCl3 were calculated. The characterizations of the polymers were achieved by Fourier‐transform infrared spectroscopy (FTIR), 1H‐nuclear magnetic resonance (1H NMR), gel‐permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and the fractional precipitation (γ) techniques. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1364–1373, 2010  相似文献   

5.
Rosin polymer–grafted lignin composites were prepared via “grafting from” atom transfer radical polymerization (ATRP) with the aid of 2‐bromoisobutyryl ester‐modified lignin as macroinitiators. Three different monomers derived from dehydroabietic acid (DA) were used for execution of grafting from ATRP, while DA was separately attached onto lignin by a simple esterification reaction. Kinetic studies indicated controlled and “living” characteristics of all monomer polymerizations. Thermal studies indicated that rosin polymer–grafted lignin composites exhibited glass transition temperatures in a broad temperature range from ~20 to 100°C. The grafting of both DA and rosin polymers significantly enhanced hydrophobicity of lignin. Static contact angle measurement of water droplets showed ~90° for all these rosin modified lignin composites. X‐ray photoelectron spectroscopy demonstrated that the surface of rosin–lignin composites was dominated with chemical compositions originating from the hydrocarbon rich rosin moiety. The impartation of hydrophobicity of rosin into lignin provided excellent water resistance of this class of renewable polymers, as all rosin‐modified lignin composites showed water uptake below 1.0 wt %. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
We have successfully used atom transfer radical polymerization (ATRP) to form linear and crosslinked polyacrylamide and polyacrylate polymers, constrained within the virus like particle (VLP) derived from the bacteriophage P22. Polymerization of Tris(hydroxymethyl)methylacrylamide was initiated, in a spatially controlled manner, using macroinitiators derived from two different mutants of P22, S39C and K118C. Initiation from the S39C mutant results in spatially confined polymer growth on the interior of P22 while initiation from the K118C site results in a polymerized VLP in which some of the polymer is partially exposed on the outside of the capsid. Using the S39C macroinitiator we have demonstrated polymerization of aminoethyl methacrylate (AEMA) monomers, crosslinked by co-polymerization with the multifunctional monomer [Ru(5-methacrylamido-phenanthroline)3]2+ resulting in an active photocatalytic P22 capsid particle.  相似文献   

7.
This paper describes the radical graft polymerization of vinyl monomers from glass fiber surface initiated by alkylazo groups introduced onto the fiber surface. The introduction of azo groups onto the glass fiber surface was achieved by reaction of isocyanate groups which were previously attached onto the surface with two kinds of azo initiators, 4,4′-azobis(4-cyanopentanoic acid) (ACPA) and 2,2′-azobis(2-cyanopropanol) (ACP). The amounts of surface azo groups introduced by ACPA and ACP were both determined to be 1.3 × 10−5 mol g−1 by nitrogen analysis. The radical graft polymerization of methyl methacrylate (MMA) was found to be initiated in the presence of the glass fiber having surface azo groups. During the polymerization, part of resultant poly(MMA) grafted onto the fiber surface through propagation of the polymer from the surface radicals produced by the decomposition of the azo groups. The percentage of grafting of poly(MMA) reached 48.1% after 24 h. The graft polymerizations of other monomers, such as styrene, N-vinylcarbazole, and acrylic acid, were also initiated by the surface azo groups, and the corresponding polymer effectively grafted onto the surface. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2121–2128, 1999  相似文献   

8.
In this article, we report a detailed study of surface modification of magnetite nanoparticles by means of three different grafting agents, functional for the preparation of magnetic polymer brushes. 3-Aminopropyltriethoxysilane (APTES), 3-chloropropyltriethoxysilane (CPTES), and 2-(4-chlorosulfonylphenyl)ethyltrichlorosilane (CTCS) were chosen as grafting models through which a wide range of polymer brushes can be obtained. By means of accurate thermogravimetric analysis a good control over the amount of immobilized molecules is achieved, and optimal operating conditions for each grafting agent are consequently determined. Graft densities ranging from approximately 4 to 7 molecules per nm(2) are obtained, depending on the conditions used. In addition, the surface-initiated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) carried out with CTCS-coated nanoparticles is presented as an example of polymer brushes, leading to a well-defined and dense polymeric coating of around 0.6 PMMA chains per nm(2).  相似文献   

9.
In an attempt to modify water-soluble synthetic polymers, graft Copolymerization of methylmethacrylate (MMA) and ethyl acrylate (EA) onto poly(vinyl alcohol), PVA, has been studied by using gamma irradiation from a Co60 source as initiator. The graft copolymerization was carried out in an aqueous medium by the mutual method in air. The effect of total dose and concentration of vinyl monomers on percentage of grafting has been determined. Water plays a significant role in the enhancement of graft copolymerization and the optimum amount of water to afford maximum grafting has been evaluated. The effect of CH3OH on aqueous grafting of MMA and EA by radiation method has been studied. The graft copolymer has been characterized by IR spectroscopic and thermogravimetric methods.  相似文献   

10.
设计并通过原子转移自由基聚合方法 (ATRP)合成了核壳型具有梯度极性的多羟基多臂星状聚合物刷 .端羟基超支化聚 (3 乙基 3 羟甲基氧杂环丁烷 )与 2 溴 异丁基酰溴反应制得大分子引发剂 (HP Br) ,以Cu(I)Br和N ,N ,N′ ,N′ ,N″ 五甲基二乙基三胺 (PMDETA)为催化体系 ,进行甲基丙烯酸甲酯 (MMA)的ATRP反应 ,得到以甲基丙烯酸甲酯为臂的多臂星状超支化聚合物 (HP g PMMA) .又以HP g PMMA为引发剂 ,进行甲基丙烯酸羟乙酯 (HEMA)的ATRP聚合 ,得到核壳型具有梯度极性的多羟基多臂星状超支化聚合物 (HP g PMMA b PHEMA) ,继续将其羟基官能团溴代化 (与 2 溴 异丁基酰溴反应 ) ,引发HEMA的ATRP溶液聚合 ,得到了多臂星状超支化聚合物刷 .产物的结构用1 H NMR、FTIR、GPC等进行了表征和测试 .  相似文献   

11.
Abstract

Postpolymerization of vinyl monomers initiated by pendant peroxycarbonate groups of grafted polymer chains on carbon black (CB) was investigated. The grafting of polymers having pendant peroxycarbonate groups onto CB was achieved by the trapping of polymer radicals formed by the thermal decomposition of copolymers of t-butylperoxy-2-methacryloyloxyethyl-carbonate (HEPO) with vinyl monomers such as vinyl acetate (VAc), styrene (St) and methyl methacrylate (MMA). The copolymers having pendant peroxycarbonate groups were prepared by copolym-erization of HEPO with vinyl monomers using azo initiator under irradiation of UV light at room temperature. The amount of remaining pendant peroxycarbonate groups of the poly(VAc-co-HEPO)-grafted CB obtained from the reaction at 90°C was maximum and decreased above the temperature. Furthermore, the postpolymerization of vinyl monomers, such as St, MMA, and VAc was initiated in the presence of poly(VAc-co-HEPO)-grafted and poly(St-co-HEPO)-grafted CB and the corresponding polymers were postgrafted onto CB to give branched polymer-grafted CB. The percentage of poly(St)-postgrafting (proportion of post-grafted poly(St) to poly(MMA-co-HEPO)-grafted CB used) increased with increasing polymerization time, but became constant at 20% after 4 hours.  相似文献   

12.
Guofeng Wang 《Liquid crystals》2013,40(9):1280-1289
The star-shaped POSS-graft-LCP with POSS as the core and liquid crystal polymer, poly{6-(4?-octyloxyphenyl-4″-benzoyl)hexyl acrylate}, as arms was prepared by atom transfer radical polymerisation technique using octa(3-chloropropyl) polyhedral oligomeric silsesquioxane [POSS-(CH2CH2CH2Cl)8] as initiator. For comparison, the linear liquid crystal polymer, poly{6-(4?-octyloxyphenyl-4″-benzoyl)hexyl acrylate} (LLCP), was obtained by conventional radical polymerisation. Both liquid crystal polymers were characterised by FT-IR, 1H NMR, 13C NMR, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, polarised optical microscopy and X-ray diffraction analysis. The liquid crystal phase behaviour research demonstrated that both liquid crystal polymers were reversible thermotropic nematic liquid crystal materials. The number of polymerisation degree of every arm attached on POSS in POSS-graft-LCP impacted greatly on the liquid crystal properties and only a small one was necessary for it to exhibit a broad liquid crystal range. Results further demonstrated that the special star-shaped topology of POSS and the eight arms attached helped POSS-graft-LCP form and stabilise liquid crystal phase easily. This research may further expand the way to star-shaped LCPs by employing a variety of (meth)acrylate and other vinyl liquid crystalline monomers.  相似文献   

13.
Photoinduced atom transfer radical polymerization (ATRP) is an economical and environment-friendly method for synthesizing polymers with pre-designable structures and precise molecular weight. Although significant progress for copper-mediated photoinduced ATRP has been achieved, several drawbacks still remain, such as poor electron transfer capability and absorption bands of photocatalysts near UV region. Herein, imine-based covalent organic framework, TAPPy-TPA-COF , has been synthesized as potential heterogeneous photocatalyst for photoinduced ATRP. The “living” feature of polymerizations of methyl methacrylate (MMA) can be well controlled by efficiency maintain the balance between activation and inactivation of CuI and CuII. The chain extension experiments have further demonstrated the chain-end fidelity of polymers. Meanwhile, the catalyst recycle experiments have revealed stability of TAPPy-TPA-COF toward ATRP processes. These results support the feasibility of using COFs as heterogeneous photocatalysts for copper-mediated ATRP under visible light irradiation.  相似文献   

14.
Low molecular weight linear poly(methyl acrylate), star and hyperbranched polymers were synthesized using atom transfer radical polymerization (ATRP) and end‐functionalized using radical addition reactions. By adding allyltri‐n‐butylstannane at the end of the polymerization of poly(methyl acrylate), the polymer was terminated by allyl groups. When at high conversions of the acrylate monomer, allyl alcohol or 1,2‐epoxy‐5‐hexene, monomers which are not polymerizable by ATRP, were added, alcohol and epoxy functionalities respectively were incorporated at the polymer chain end. Functionalization by radical addition reactions was demonstrated to be applicable to multi‐functional polymers such as hyperbranched and star polymers.  相似文献   

15.
Summary: The controlled polymerisation of a bulky, peptide‐based monomer was investigated. The cyclic β‐sheet forming decapeptide gramicidin S was modified with a methacrylate handle and subsequently polymerised via atom transfer radical polymerisation (ATRP), to yield a well‐defined gramicidin‐S‐containing polymer. The secondary structure of the peptide moiety was retained within the resulting polymer, as indicated by IR spectroscopy. This is the first example of the use of ATRP to create a synthetic polymer with a cyclic peptide as a side chain.

The gramicidin S based monomers synthesised here were then polymerised by ATRP.  相似文献   


16.
A new styrene derivative monomer, 4-(N-carbazolyl)methyl styrene (CzMS), was synthesized by reacting 4-chloromethyl styrene with carbazole in the presence of sodium hydride. Then, CzMS was homopolymerized and copolymerized with different monomers such as methyl methacrylate (MMA), ethyl methacrylate (EMA), methyl acrylate (MA), ethyl acrylate (EA) and n-butyl acrylate (BA) by free radical polymerization method in N,N-di-methylformamide (DMF) solution at 70 ± 1 °C using azobisisobutyronitrile initiator to give the copolymers I-V in good yields. The structure of all the resulted polymers was characterized and confirmed by FT-IR, 1H NMR and 13C NMR spectroscopic techniques. The average molecular weight and glass transition temperature of polymers were determined using gel permeation chromatograph (GPC) and differential scanning calorimeter (DSC) instruments, respectively. It was found that these polymers with carbazole moieties have high thermal stability and the presence of bulk carbazole groups in polymer side chains leads to an increase in the rigidity and glass transition temperature of polymers.  相似文献   

17.
Polymerisation of vinyl acetate by conventional free radical polymerisation using a diazo initiator followed by copper mediated living radical polymerisation with a range of monomers was studied. This method led to the synthesis of triblock copolymers. We have thus successfully prepared several new ABA triblock copolymers where B is poly(vinyl acetate) and A is (dimethylamino)ethyl methacrylate (DMAEMA), (polyethylene glycol) methyl ether methacrylate (MeO(PEG)MA) or solketal methacrylate (SMA). The sequential conventional/living radical polymerisation approach provided an efficient route to synthesis of new block copolymers. The properties of these amphiphilic polymers have been subsequently investigated by 1H NMR, fluorescence spectroscopy, tensiometry and dynamic light scattering to investigate their behaviour as potential surfactants.  相似文献   

18.
Imine macrocyclic ligand M1 was involved in homo‐ and co‐polymerization of some vinyl monomers via atom transfer radical polymerization technique (ATRP). Hereby, vinyl acetate, styrene and methyl acrylate monomers were homopolymerized. On the other hand, they were involved in copolymerization with MMA. M1∶CuBr∶initiator∶monomer percentages were 1∶2∶4∶400. 1HNMR confirmed the structures of the resulting polymers. The thermal behaviors of some selected polymers were studied.  相似文献   

19.
Star homopolymers of some vinyl monomers such as methyl methacrylate, n‐butyl methacrylate and styrene (MMA, nBMA, St.) were prepared by using a N,N,N′N′‐tetramethylethylenediamine ligand/CuBr catalytic system via atom transfer radical polymerization (ATRP). A three armed benzene based core was successfully used as initiator. Low polydispersities and regular molecular weight values were obtained in most cases, especially at low conversions. MMA and BMA showed comparable behavior where controlled and true ATRP was observed even at high conversions. However, styrene monomer recorded irregular high polydispersities at high conversions in spite of the relatively low molecular weight values. Some block copolymers were obtained using MMA homopolymer as macroinitiator with the same strategy of ATRP. 1H‐NMR confirmed the structures of the resulting polymers. Transmission electron microscopy (TEM) proved the nano‐structure of the star polymers. The thermal behavior of the MMA star homo and copolymers was studied. The effect of the star shape on thermal behavior was very clear with respect to the linear ones.  相似文献   

20.
N-methylacrylamide (NMAAm) and N-methylmethacrylamide (NMMAm) were polymerized to give polymer microspheres containing living propagating radicals. The microsphere polymer radicals were allowed to react with some binary mixtures of vinyl monomers including alternating copolymerization combinations. The reaction processes were investigated by ESR spectroscopy. In the poly(NMMAm) radical/methyl methacrylate (MMA)/styrene (St) system, the propagating radical from MMA was mainly observed at the higher MMA concentration, while polySt radical prevailed at the lower MMA concentration. In the poly(NMMAm) radical/α-methylstyrene (α-MeSt)/diethyl fumarate system, the α-MeSt radical was exclusively observed, while the maleic anhydride (MAn) radical was predominantly observed in the α-MeSt/MAn system. In the MAn/diphenylethylene system, the propagating radicals from both monomers were observed at comparable concentrations. The poly(NMAAm) microsphere radical behaved differently in the reaction with the MMA/St mixture. The poly(NMAAm) microsphere was found to incorporate preferentially St, leading to formation of the St radical. The St preference was enhanced in the St/cyclohexyl methacrylate (CHMA) system. These results were in agreement with those of block copolymerization via the reaction of poly(NMAAm) radical with the MMA/St or CHMA/St mixture, where the compositions of the resulting polymers were analyzed by pyrolysis gas chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号