首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel α,ω‐heterofunctional poly(ethylene oxide) (PEO) macromonomer possessing methacryloyl and thienyl end groups was prepared by ring‐opening polymerization of ethylene oxide initiated by potassium thienylethoxide and termination of the living PEO ends with methacryloyl chloride. Incorporation of methacryloyl and thienyl groups was confirmed by free‐radical and oxidative polymerization processes, respectively, and by means of 1H NMR analysis.

  相似文献   


2.
Poly(ethylene glycol‐b‐lactide) possessing a methoxy group at the poly(ethylene glycol) (PEG) chain end and a polymerizable methacryloyl group at the poly(lactic acid) (PLA) chain end (MeO–PEG/PLA–methacryloyl) was prepared by an anionic ring‐opening polymerization of ethylene oxide and DL ‐lactide in tandem manner initiated with a potassium 2‐methoxyethanolate, followed by end‐capping with an excess of methacrylic anhydride. The molecular weight of the obtained polymer was controlled by the initial monomer/initiator ratio, which was confirmed by the combination of gel permeation chromatography and nuclear magnetic resonance analyses. The functionality of the methacryloyl–PLA end was almost quantitative. The MeO–PEG/PLA–methacryloyl (38/35; these numbers in parentheses denote the molecular weights of PEG and PLA segments divided by 100, respectively) formed a core–shell type spherical micelle in aqueous media obtained by a dialysis technique, the cumulant diameter of which was ca. 30 nm with very low polydispersity factor. The methacryloyl group adjacent to the PLA was polymerized in the PLA core of the micelle. The polymerization proceeded thermally with radical initiator and photochemically with photo‐initiator to produce core‐polymerized nanoparticles, which was found by spectroscopic and light‐scattering techniques. Taxol‐incorporated micelles were prepared to entrap Taxol into MeO–PEG/PLA–methyacryloyl block copolymer micelles by the oil/water emulsion method. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Synthesis of poly(ethylene oxide) (PEO) macromonomers carrying a methacyloyl group in one end, and N, N-dimethyl amino, thiophene, styryl and vinyl ether functional groups in the other end was desribed. The general synthetic strategy is based on the living anionic polymerization of ethylene oxide initiated with functional potassium alcoholates, followed by reaction with methacyloyl chloride. These macromonomers were further utilized in various macromolecular architectures through via concurrent or selective thermal free radical, oxidative and photoinitiated free radical and cationic polymerization methods. The use of this synthetic route to prepare graft copolymers possessing completly and perfectly alternating PEO side chains using charge-transfer-complex polymerization was also demonstrated.  相似文献   

4.
以聚乙二醇甲基丙烯酸酯(PEGMA)为大分子引发剂进行ε-己内酯的酶催化开环聚合, 合成出嵌段共聚物, 然后将其转化成大分子引发剂型单体(Macroinimer), 最后通过原子转移自由基聚合(ATRP)制备出一种新型结构的嵌段型支化聚合物.  相似文献   

5.
A series of block copolymers bearing a single amino in-chain functionality was synthesized via anionic polymerization of styrene and ethylene oxide. By means of both a conventional and a continuous setup, living polystyrene was quantitatively end functionalized with an oxirane (DBAG) prior to the polymerization of the poly(ethylene oxide) segment. The in-chain amine was conjugated with a fluorescent dye.  相似文献   

6.
A procedure to prepare nonionic reactive surfactants with different polymerizable groups is described. The synthesis involves the initiation of living anionic ring-opening polymerization of ethylene oxide and propylene oxide (for the hydrophilic part and the hydrophobic part, respectively) by a potassium salt prepared from the stoichiometric reaction of potassium hydride and diethylene glycol monomethyl ether. The resulting anion is reacted with chloride compounds (methacryloyl, allyl, vinylacetoyl) and maleic anhydride, as well as with isobutanoyl chloride, leading to a nonpolymerizable compound having a similar structure. Then, it was possible to produce a range of reactive surfactants more or less reactive with the monomers. These surfactants are expected to be used further in emulsion polymerization processes (styrene and butyl acrylate). This procedure gives good control of both hydrophobic and hydrophilic parts, and the end reaction for the different functionality of surfmers is quite quantitative. All the surfactants were characterized by size-exclusion chromatography and 1H NMR. Physicochemical properties, such as the critical micellar concentration and the specific area, were also measured.  相似文献   

7.
Synthesis of a novel macroinimer comprising poly(ε‐caprolactone) (PCL) and thiophene (Th) and its use in electrochromic device (ECD) application have been reported. First, a novel Th monomer ( 5 ) with miktofuntional initiator groups (primary hydroxyl and tertiary bromide at the third position of the thiophene ring) was synthesized in a four‐step reaction sequence. Density functional theory‐predicted bond lengths, angles, and vibrations of 5 were in good agreement with available experimental vibrational spectra. Subsequently, ring‐opening polymerization of ε‐caprolactone (ε‐CL) was carried out in bulk using 5 as the initiator and tin(II) 2‐ethylhexanoate (Sn(Oct)2) as the catalyst at 115 °C, which led to α‐thiophene end‐capped PCL macroinimer (PCL‐Th). Furthermore, PCL‐Th macroinimer was used in electrochemical copolymerization with pyrrole (Py) and Th. PCL‐Th/PTh copolymer film synthesized on indium tin oxide‐coated glass slide showed electrochromic behavior. Optical analyses of the PCL‐Th/PTh copolymer film indicated that the copolymer film was suitable to be used as an anodically coloring material for ECD applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Functional poly(ethylene oxide) stars were prepared by free‐radical copolymerization of poly(ethylene oxide) macromonomers with divinylbenzene in water. The poly(ethylene oxide) arm was prepared by anionic polymerization using 2‐[2‐(N,N‐dimethylamino)ethoxy]ethanol potassium alkoxide as the initiator. These functional stars were converted into peripherally charged stars by quaternization of the peripheral tertiary amino groups with methyl iodide.  相似文献   

9.
Functionalized poly(ethylene oxide) (PEO) macromonomers (alpha -tertiary amino and omega -methacryloyl groups) were prepared by ring-opening polymerization of live PEO anions end-capped with styrene oxide using 2-[2-(N ,N -dimethylamino)-ethoxy]ethanol potassium alkoxides as an initiator with methacryloyl chloride. PEO brushes were synthesized by free-radical homopolymerization of such PEO macromonomers. These brushes were converted into peripherally charged brushes by quaternization. We studied the solution properties of both types of brushes from the viewpoint of charge effect. It was found from dynamic light scattering (DLS) that the polymer brushes formed a single macromolecule in solution due to crowding of side chains. It was speculated from angular dependence measurements that the polymer brushes with large aspect ratios took a geometrical anisotropic conformation such as a cylinder. In methanol with a low dielectric constant, radius of gyration (R(G)), and cross-sectional radius of gyration (R(G,C)) of the polymer brushes with charged side chains were smaller than those of the polymer brushes without charges. In a solvent with a low dielectric constant such as methanol, ionic groups do not dissociate and condense. On the other hand, these physical values in an aqueous solution were somewhat larger than those of the polymer brushes without charges. In water with a high dielectric constant, peripherally charged brushes were strongly stabilized by electric double layers.  相似文献   

10.
A universally significant method,which combines the anionic polymerization with photoinduced charge transfer polymerization,for preparation of soluble star ABC triblock copolymer of ethylene oxide,styrene and methyl methacrylate,was described.The poly(ethylene oxide) (PEO) block was formed by initiation of phenoxy an-ions using p-aminophenol protected by Schiff's base as the parent compound Then the charge transfer system composed of PEO chains with deprotected-amino end groups and benzophenone initiated the polymerization of styrene and methyl metnacrylate sequentially under UV irradiation.The formed star triblock copolymer of styrene,ethylene oxide and methyl methacrylate could be purified by thin-layer chromatography (TLC) and characterized by IR,1H NMR,GPC (gel permeation chromatogrphy) and PGC (pyrolysis gas chromatography).  相似文献   

11.
Polyethylene oxides with amine and sulfadiazine end groups (PEOa-sf) were prepared by alkoxy-anion ring-opening polymerization of ethylene oxide (EO); the potassium aminoethoxide with a protected amino group was used as initiator. The living polyethylene oxide anions was terminated by methanol first, then the separated polymer was continuously reacted to bromacetic acid in the presence of metal sodium. After that the purified intermediate was reacted sequentially with benzoyl chloride and sulfadiazine, then hydrolyzed with acetic acid. The final product PEOa-sf and all intermediates are characterized in detail by IR, NMR, GPC, and chemical analysis; the effect of reaction conditions on the preparation of polyethylene oxides with various functional end groups are discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Methacrylate‐functionalized poly(ethylene oxide‐co‐ethylene carbonate) macromonomers were prepared in two steps by the anionic ring‐opening polymerization of ethylene carbonate at 180 °C, with potassium methoxide as the initiator, followed by the reaction of the terminal hydroxyl groups of the polymers with methacryloyl chloride. The molecular weight of the polymer went through a maximum after approximately 45 min of polymerization, and the content of ethylene carbonate units in the polymer decreased with the reaction time. A polymer having a number‐average molecular weight of 2650 g mol?1 and an ethylene carbonate content of 28 mol % was selected and used to prepare a macromonomer, which was subsequently polymerized by UV irradiation in the presence of different concentrations of lithium bis(trifluoromethanesulfonyl)imide salt. The resulting self‐supportive crosslinked polymer electrolyte membranes reached ionic conductivities of 6.3 × 10?6 S cm?1 at 20 °C. The coordination of the lithium ions by both the ether and carbonate oxygens in the polymer structure was indicated by Fourier transform infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2195–2205, 2006  相似文献   

13.
氨基两亲高分子磁性微球的制备与表征   总被引:10,自引:0,他引:10  
采用分散聚合法,以乙醇水为介质,在Fe3O4磁流体存在下,通过苯乙烯与聚氧乙烯大分子单体(MPEO)共聚制备了同时具有两亲性和磁响应性的端基为氨基的高分子微球.改变聚合条件可以得到平均粒径范围在5~80μm,氨基含量为0.01~0.25mmolg的两亲磁性高分子微球.  相似文献   

14.
环氧乙烷环氧丙烷共聚醚的研究进展   总被引:3,自引:0,他引:3  
综述了环氧乙烷环氧丙烷共聚醚的聚合机理聚合工艺及其应用.环氧乙烷环氧丙烷共聚醚的聚合按其催化剂体系的机理可以分为阴离子聚合、阳离子聚合和配位聚合三类,其中阳离子聚合应用较少.在环氧乙烷和环氧丙烷开环聚合生成共聚醚的反应中,不同的反应工艺条件对生成的聚醚有着很大的影响.同样比例的环氧乙烷和环氧丙烷,因聚合反应器设计、反应器种类、起使剂种类催化剂种类与用量温度加料方式端基结构等的不同,所合成的共聚醚会产生不同的结构和性能.环氧乙烷环氧丙烷共聚形成的聚醚可以分为嵌段共聚醚和无规共聚醚两类.其中,嵌段共聚醚可以分为EPE和PEP两类.  相似文献   

15.
Polyethylene oxide with sulfadiazine and hydroxyl end groups (PEOsf) were prepared by anion ring-opening polymerization of ethylene oxide initiated by sodium 4-amino-N-(2-pyrimidinyl)benzene sulfonamide (SF-Na). The product was characterized in detail by NMR, IR, GPC and DSC. Its molecular weight and molecular weight distribution are in the range of 1200-1 500 and 1.04-1.06 respectively, and the latter is nearly monodistribution. The trace of the moisture from air could accelerate the polymerization, and the mechanism is discussed.  相似文献   

16.
The functional aluminum alkoxide, Et2Al? O? (CH2)2? O-C(O)? C(CH3)?CH2, is a very effective initiator for the (D ,L )-lactide (LA) polymerization in toluene at 707deg;C. The coordination-insertion type of polymerization is living and exclusively yields linear P (D ,L )-lactide macromonomers of a predictable molecular weight and a narrow molecular weight distribution. IR and 1H-NMR studies show that the methacryloyl group of the initiator is selectively and quantitatively attached to one chain end, whereas the second extremity is systematically a hydroxyl function resulting from the hydrolysis of the living growing site. α,ω-Dimethacryloyl-P(D ,L )-lactides, i.e., α,ω-macromonomers, have also been successfully synthesized by the additional control of the termination step, i.e., by reaction of Al alkoxide end groups with methacryloyl chloride. α-Macromonomer and α,ω-macromonomer P(D ,L )-lactides are easily free-radical copolymerized with 2-hydroxyethyl methacrylate (HEMA), resulting in a hydrophilic poly (HEMA) backbone grafted with hydrophobic P(D ,L )-lactide subchains and a biodegradable amphiphilic network, respectively. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
Functional poly(ethylene oxide) star polymers possessing a tertiary amino group at each arm end were prepared by free-radical copolymerization of poly(ethylene oxide) macromonomers with divinylbenzene (DVB) in water or ethanol. The poly(ethylene oxide) arm was prepared by anionic polymerization using 2-[2-(N,N-dimethylamino)ethoxy]ethanol potassium alkoxide as the initiator. The star polymers had narrow molecular weight distribution. The arm number was controlled by varying the feed ratio [DVB]/[M], the initial concentration of macromonomer [M], and solvent media. The branching factor g' in methanol ([eta]S/[eta]L are the intrinsic viscosities of the star and linear molecules, respectively) exhibited a power-law dependence on the arm number, f, with a negative exponent. This means that the dimensions of a star were in agreement with the Daoud-Cotton scaling model.  相似文献   

18.
Amphiphilic poly(ε‐caprolactone)‐b‐poly[(methacrylate‐graft‐poly(ethylene oxide))‐co‐6‐O‐methacryloyl‐D ‐galactopyranose] (PCL‐b‐P(MAPEO‐co‐GaMa)) with various compositions and molecular weights were synthesized via a controlled four‐step strategy. The first step involves the synthesis of functionalized poly(ε‐caprolactone) macroinitiator by ring‐opening polymerization (ROP) of ε‐caprolactone (CL) as initiated by aluminum triisopropoxide (Al(OiPr)3). After selective bromination of the hydroxyl end‐group of the resulting α‐isopropoxy, ω‐hydroxy poly(ε‐caprolactone) by using 2‐bromoisobutyryl bromide, the controlled radical copolymerization of α‐methoxy, ω‐methacrylate poly(ethylene oxide) (MAPEO) with 6‐O‐methacryloyl‐1,2;3,4‐di‐O‐isopropylidene‐D ‐galactopyranose (DIGaMa) was performed by atom transfer radical polymerization (ATRP) in THF at 60 °C using CuBr ligated with 1,1,4,7,10,10 hexamethyltriethylenetetramine (HMTETA) as catalytic complex. In the final step, isopropylidene protective functions were selectively removed using an aqueous formic acid solution leading to the expected amphiphilic graft copolymers. The molecular characterization of those copolymers was performed by 1H NMR spectroscopy and gel permeation chromatography (GPC) analysis. The self‐assembly of the copolymers into micellar aggregates as well as the related critical micellization concentration (CMC) in aqueous media were determined by dynamic light scattering (DLS) and fluorescence spectroscopy, respectively. In parallel, the morphology of the solid deposits of micellar aggregates was examined with atomic force microscopy (AFM). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3662–3672, 2008  相似文献   

19.
Polyethers of low and medium molecular weight containing at both ends stable ionic groups (phosphonium ions) were obtained by living cationic polymerization of tetrahydrofuran initiated by difunctional initiator, trifluoromethanesulfonic anhydride, followed by termination with triphenylphosphine. It was shown, that products contain significant quantities of low molecular weight diphosphonium salt; a plausible explanation is presented. Alternative approach to the synthesis of diionically terminated polyethers was based on the conversion of hydroxyl end-groups of polyether diols, which can be obtained by cationic Activated Monomer (AM) polymerization of e.g. oxiranes, into phosphonium ion end-groups. Using this approach, poly(ethylene oxide)'s with Mn ranging from 300 to 3400, terminated at both ends with stable ionic groups, were prepared and characterized. Measurements of NMR relaxation times and viscosity measurements provide the evidence for the aggregation of ionic end-groups. The potential applications of inter- and intramolecular aggregation are discussed. It is shown, that intramolecular aggregation of ionic terminal groups in low molecular weight poly(ethylene oxide) leads to cyclic structures resembling crown ethers and showing comparable efficiency for complexing cations.  相似文献   

20.
Amphiphilic graft copolymer of polystyrene (PS) as backbone and poly(ethylene oxide) (PEO) as branch chain was prepared by Decker-Forster reaction. PEO with Schiff's base end group (PEOs) was obtained by ring-opening polymerization of ethylene oxide (EO) initiated with protected potassium aminoethoxide, and then alkylated with chloromethylated polystyrene (c-PS). A graft copolymer with high grafting efficiency was derived by hydrolysis of the above-mentioned product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号