首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The radical copolymerisation in solution of vinylidene fluoride (or 1,1-difluoroethylene (VDF)) with hexafluoropropylene (HFP) initiated by di-tert-butyl peroxide is presented. A series of eight copolymerisation reactions was investigated with initial [VDF]o/[HFP]o molar ratios ranging from 5.0/95.0 to 85.2/14.8. Both co-monomers copolymerised in this range of copolymerisation. Moreover, only VDF homopolymerised in these conditions. The copolymer compositions of these random-type copolymers were calculated by means of 19F NMR spectroscopy which allowed the respective amount of each monomeric unit in the copolymer to be quantified. The Tidwell and Mortimer method led to the assessment of the reactivity ratios, ri, of both co-monomers showing a higher incorporation of VDF in the copolymer (rHFP = 0.12 ± 0.05 and rVDF = 2.9 ± 0.6 at 393 K). Alfrey-Price's Q and e values of HFP were calculated to be 0.002 (from QVDF = 0.008) or 0.009 (from QVDF = 0.015) and +1.44 (versus eVDF = 0.40) or +1.54 (versus eVDF = 0.50), respectively, indicating that HFP is an electron-accepting monomer. The thermal properties of these fluorinated copolymers were also determined. Except for those containing a high amount of VDF, they were amorphous. Each showed one glass transition temperature (Tg) only, and from known laws of Tg, that of the homopolymer of HFP was assessed. It was compared with that obtained from the literature after extrapolation and is discussed.  相似文献   

2.
The radical copolymerization of vinylidene fluoride (VDF) and 1‐bromo‐2,2‐difluoroethylene (BDFE) in 1,1,1,3,3‐pentafluorobutane solution at different monomer molar ratios (ranging from 96/4 to 25/75 mol %) and initiated by tert‐butylperoxypivalate (TBPPI, mainly) is presented. Poly(VDF‐co‐BDFE) copolymers of various aspects (from white powders to yellow viscous liquids) were produced depending on the copolymer compositions. The microstructures of the obtained copolymers were characterized by 19F and 1H NMR spectroscopy and by elementary analysis and these techniques enabled one to assess the contents of both comonomers in the produced copolymers. VDF was shown to be more incorporated in the copolymer than BDFE. From the extended Kelen and Tudos method, the kinetics of the radical copolymerization led to the determination of the reactivity ratios, ri, of both comonomers (rVDF = 1.20 ± 0.50 and rBDFE = 0.40 ± 0.15 at 75 °C) showing that VDF is more reactive than BDFE. Alfrey‐Price's Q and e values of BDFE monomer were calculated to be 0.009 (from QVDF = 0.008) or 0.019 (from QVDF = 0.015) and +1.22 (vs. eVDF = 0.40) or +1.37 (vs. eVDF = 0.50), respectively, indicating that BDFE is an electron‐accepting monomer. Statistic cooligomers were produced with molar masses ranging from 1,800 to 5,500 g/mol (assessed by GPC with polystyrene standards). A further evidence of the successful copolymerization was shown by the selective reduction of bromine atoms in poly(VDF‐co‐BDFE) cooligomers that led to analog PVDF. The thermal properties of the poly(VDF‐co‐BDFE) cooligomers were also determined and those containing a high VDF amount exhibited a high thermal stability. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3964–3976, 2010.  相似文献   

3.
An improved synthesis of 2,3,3‐trifluoroprop‐2‐enol (FA1) and its copolymerization in solution with vinylidene fluoride (VDF, or 1,1‐difluoroethylene) initiated by tert‐butyl peroxypivalate are presented. A new synthesis of FA1, with NaH and lithium diisopropylamine as bases, from 2,2,3,3‐tetrafluoropropanol is described. A series of nine copolymerization reactions were investigated from initial [VDF]0/[FA1]0 molar ratios of 9.1/90.9 to 94.2/5.8. The copolymer compositions were calculated via 19F NMR spectroscopy. From the Tidwell–Mortimer method, the reactivity ratios of both comonomers were determined (rFA1 = 0.11 ± 0.22 and rVDF = 0.83 ± 0.77 at 50°C), and they showed an azeotropic point. Alfrey and Price's Q and e values of FA1 were calculated to be 0.0178 (from QVDF = 0.008), 0.039 (from QVDF = 0.015), and 0.275 (from QVDF = 0.036) and 2.74 (vs eVDF = 1.20), 2.04 (vs eVDF = 0.50), and 1.94 (vs eVDF = 0.4), respectively, and they indicated that FA1 is an electron‐accepting monomer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3634–3643, 2002  相似文献   

4.
The radical copolymerization of perfluoromethylvinyl ether (PMVE) and perfluoropropylvinyl ether (PPVE) with vinylidene fluoride (VDF), initiated by tertiobutyl peroxypivalate (TBPPI) and ditertiobutyl peroxide (DTBP), respectively, are presented. The kinetics of copolymerization were investigated for each monomer from series of at least eight reactions for which the initial [VDF]0/[fluorinated vinyl ether]0 molar ratios ranged between 20/80 and 80/20. The copolymer compositions of these random-type copolymers were calculated by means of 19F NMR spectroscopy and allowed one to quantify the respective amounts of each monomeric unit in the copolymer. According to the Tidwell and Mortimer method, the reactivity ratios (ri) of both comonomers for each type of copolymerization were obtained : rVDF = 3.40 ± 0.40 and rPMVE = 0 at 74 °C; and rVDF = 1.15 ± 0.36 and rPPVE = 0 at 120 °C. Moreover, the glass transition temperatures (Tg’s) of poly(VDF-co-PMVE) and poly(VDF-co-PPVE) copolymers containing different amounts of VDF and PMVE or PPVE, were determined and the theoretical glass transition temperatures of poly(PMVE) and poly(PPVE) homopolymer were deduced.  相似文献   

5.
The radical copolymerization in solution of vinylidene fluoride (VDF; or 1,1‐difluoroethylene) with methyl 1,1‐dihydro‐4,7‐dioxaperfluoro‐5,8‐dimethyl non‐1‐enoate (MDP) initiated by di‐tert‐butyl peroxide is presented. Six copolymerization reactions were investigated with initial [VDF]0/[MDP]0 molar ratios of 35/65 to 80/20. Both of these comonomers copolymerized in this range of copolymerization. Moreover, these comonomers homopolymerized separately under these conditions. The copolymer compositions of these random copolymers were calculated by means of 19F NMR spectroscopy, which allowed the quantification of the respective amounts of each monomeric unit in the copolymers. The Tidwell–Mortimer method was used for the assessment of the reactivity ratios (ri) of both comonomers, which showed a higher incorporation of MDP in the copolymers (rMDP = 2.41 ± 2.28 and rVDF = 0.38 ± 0.21 at 120 °C). The Alfrey–Price Q and e values of the trifluoroallyl monomer MDP were calculated to be 0.024 (from QVDF = 0.008) or 0.046 (from QVDF = 0.015) and 0.70 (vs eVDF = 0.40) or 0.80 (vs eVDF = 0.50), respectively, indicating that MDP was an electron‐accepting monomer. The thermal properties of these fluorinated copolymers were also determined. Except for those containing a high amount of VDF, the copolymers were amorphous. Each showed one glass‐transition temperature (Tg) only, and with known laws of Tg's, Tg of the MDP homopolymer was assessed. It was compared to that obtained from the direct radical homopolymerization of MDP and discussed. Indeed, these two values were close (Tg = ?3 °C). Thermogravimetric analyses were performed, and they showed that the copolymers were rather thermostable because the thermal degradation occurred at 280 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3109–3121, 2003  相似文献   

6.
The synthesis and the radical copolymerisation of 2-hydroperfluorooct-1-ene (HPO) with vinylidene fluoride (VDF), initiated by tertio-butyl peroxypivalate (TBPPI) at 75 °C, are presented. That fluorinated alkene (HPO) was synthesised in two steps starting from the thermal or redox telomerisation of VDF with C6F13I (after purification of the monoadduct compound by rectification) followed by a dehydroiodination in the presence of various alkalies. Their influences are discussed toward the yield of the reaction. The compositions of the resulting random-type copolymers were calculated by means of 19F NMR spectroscopy and allowed one to quantify the respective amounts of each monomeric unit in the copolymer. From the Tidwell and Mortimer method, the reactivity ratios (ri) of both comonomers for this copolymerisation were determined showing a higher incorporation of VDF: rVDF = 12.0 ± 3.0 and rF2CCHC6F13=0.9±0.4 at 74 °C.  相似文献   

7.
Investigations on free radical copolymerization of 1-vinyl naphthalene (1-VNph, monomerM 2) with styrene (St), methyl methacrylate (MMA) and acrylonitrile (AN) (monomersm 1) in bulk at 60°C with AIBN as initiator are presented. Relative reactivity ratios were calculated by the Kelen-Tüdös method yielding:r st=0.70 ±0.23 andr 1–VNph=2.02 ±0.40 for system St/1-VNph;r MMA=0.32 ±0.10 andr 1–VNph=0.57 ±0.07 for system MMA/1-VNph andr AN=0.11 ±0.03 andr 1–VNph=0.45 ±0.09 for system AN/1-VNph.Q, e values for 1-VNph according to Alfrey, Price scheme were calculated toQ 1–VNph=1.02,e 1VNph=–0.62.  相似文献   

8.
The bulk radical copolymerization of tetrafluoroethylene (TFE) with 4,5,5‐trifluoro‐4‐ene pentyl acetate (FAc), initiated by tert‐butyl peroxypivalate to synthesize original, functionalized fluorinated poly(TFE‐co‐FAc), was investigated. FAc monomer was prepared from a five‐step process. The copolymerization was carried out in batch at different initial monomer molar ratios ([TFE]o/[FAc]o ranging from 95/5 to 10/90 mol %) and at different initiator concentrations (ranging between 0.075 and 1.100 mol % about the monomers) at 70 °C. All the experiments revealed the production of fluorooligomers as evidenced by an allylic‐transfer reaction from FAc. The microstructure of these copolymers (i.e., the molar percentage of both monomers in the copolymers) was assessed by 19F NMR spectroscopy. From the kinetics of copolymerization, two key characteristics were determined. First, the reaction order to the initiator (being 1.07) and that of FAc monomer (0.85) showed a heterogeneous character of the copolymerization and monomolecular chain‐transfer reaction to FAc. Second, from the Tidwell and Mortimer method, the reactivity ratios of both comonomers were determined, showing a tendency to alternance in a wide range of initial monomeric ratios (30/70–70/30): rFAc = 0.20 ± 0.26 and rTFE = 0.18 ± 0.15. Alfrey and Price's Q and e values of FAc were calculated by Greenley's technique [QFAc = 0.098 (from QTFE = 0.032) and eFAc = 1.23 (vs eTFE = 1.63)], indicating that FAc is a strong electron‐withdrawing monomer as TFE. The normalized monomer‐diad and triad fractions as a function of the polymer composition were obtained from the comonomer sequence‐distribution procedure. The average molecular weights and molecular weight distributions as well as the thermal properties (glass‐transition temperature and decomposition temperature) of the fluorocopolymers were assessed and are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1693–1706, 2004  相似文献   

9.
The monomer reactivity ratios for the radical copolymerization of crotononitrile (CN), methyl crotonate (MC), and n-propenyl methyl ketone (PMK) with styrene (St) were measured at 60°C. in benzene and little penultimate unit effect was shown for these systems. The values obtained were: St–CN, r1 = 24.0, r2 = 0; St–MC, r1 = 26.0, r2 = 0.01; St–PMK, r1 = 13.7, r2 = 0.01. The rate of copolymerization and the viscosity of the copolymer decreased markedly as the molar fraction of the crotonyl compound in the monomer mixture increased. The Q–e values were also calculated to be as follows: CN, e = 1.13, Q = 0.009; MC, e = 0.36, Q = 0.015; PMK, e = 0.61, Q = 0.024. A linear relationship was obtained between the e values of the crotonyl compounds and their Hammett constants σm.  相似文献   

10.
Summary: In-line Fourier Transform – near infrared (FT-NIR) spectroscopy is a very elegant method to follow conversion as well as phase behaviour throughout a reaction. It was applied to two examples of homogeneous phase syntheses of fluorinated copolymers in supercritical carbon dioxide (scCO2). The conventional free radical copolymerization of vinylidene fluoride (VDF) and hexafluoropropene (HFP) on the one hand side, and the Activators Generated by Electron Transfer (AGET) Atom Transfer Radical Polymerization (ATRP) of F-decene (1H-1H, 2H perfluoro-1-decene) and tBA (tert-butyl acrylate) on the other hand side were studied. Poly(VDF-co-HFP) were synthesized at 75 and 100 °C at pressures above 800 bar to remain in solution, even at high VDF contents. The reactivity ratios, r, were determined from a small number of experiments using the entire conversion vs. time data from in-line FT-NIR measurements. The estimated values are rVDF = 4.3 and rHFP = 0.1. In the case of poly(F-decene-co-tBA), a fluorinated macroligand was introduced for AGET ATRP. Molecular weights between 10000 and 40000 g/mol and polydispersities between 1.1 and 2.1 were obtained while remaining in homogeneous phase. Reactivity ratios were determined as rF-decene = 0.02 and rtBA = 9.1.  相似文献   

11.
The radical copolymerization of vinylidene fluoride (VDF) with 4‐bromo‐1,1,2‐trifluorobut‐1‐ene (C4Br) was examined. This bromofluorinated alkene was synthesized in three steps, which started with the addition of bromine to chlorotrifluoroethylene. In contrast to the ethylenation of 1,1‐difluoro‐1,2‐dibromochlorethane, which failed, that of 2‐chloro‐1,1,2‐trifluoro‐1,2‐dibromoethane was optimized and led to 2‐chloro‐1,1,2‐trifluoro‐1,4‐dibromobutane. The kinetics of the copolymerization of VDF with this brominated monomer initiated by t‐butyl peroxypivalate led to an assessment of the reactivity ratios, rVDF = 0.96 ± 0.67 and rC4Br = 0.09 ± 0.63, at 50 °C. The suspension copolymerization was also carried out, and the chemical modifications of the resulting bromo‐containing poly(vinylidene fluoride)s were attempted and consisted mainly of elimination or nucleophilic substitution of the bromine. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 917–935, 2005  相似文献   

12.
The radical co‐ and terpolymerization of perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride (PFSVE) with 1,1‐difluoroethylene (or vinylidene fluoride, VDF or VF2), hexafluoropropene (HFP), chlorotrifluoroethylene (CTFE), and bromotrifluoroethylene (BrTFE) is presented. Although PFSVE could not homopolymerize under radical initiation, it could be copolymerized in solution under a radical initiator with VDF, while its copolymerizations with HFP or CTFE led to oligomers in low yields. The terpolymerizations of PFSVE with VDF and HFP, with VDF and CTFE, or with VDF and BrTFE also led to original fluorinated terpolymers bearing sulfonyl fluoride side‐groups. The conditions of co‐ and terpolymerization were optimized in terms of the nature and the amount of the radical initiators, of the nature of solvents (fluorinated or nonhalogenated), and of the initial amounts of fluorinated comonomers. The different mol % contents of comonomers in the co‐ and terpolymers were assessed by 19F NMR spectroscopy. A wide range of co‐ and terpolymers containing mol % of PFSVE functional monomer ranging from 10 to 70% was produced. The kinetics of copolymerization of VDF with PFSVE enabled to assess the reactivity ratios of both comonomers: rVDF = 0.57 ± 0.15 and rPFSVE = 0.07 ± 0.04 at 120 °C. The thermal and physicochemical properties were also studied. Moreover, the glass transition temperatures (Tgs) of poly(VDF‐co‐PFSVE) copolymers containing different amounts of VDF and PFSVE were determined and the theoretical Tg of poly(PFSVE) homopolymer was deduced. Then, the hydrolysis of the ? SO2F into ? SO3H function was investigated and enabled the synthesis of fluorinated copolymers bearing sulfonic acid functions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1814–1834, 2007  相似文献   

13.
N-(2-thiazolyl)methacrylamide (TMA) monomer was synthesized from 2-aminothiazole by two different methods. The homo- and copolymerization of this monomer with methyl methacrylate (MMA), styrene (St), acrylonitrile (AN), and vinyl acetate (VA) were performed in dimethyl formamide using 1 mol% AIBN at 70°C. The copolymerization behavior was studied in a wide composition interval with the mole fractions of TMA ranging from 0.1 to 0.7 in the feed. Characterization using FTIR and 1HNMR techniques confirmed the structure of the monomer and the prepared homo- and copolymers, but the copolymers compositions were determined from sulphur analysis. The monomer reactivity ratios were computed using Fineman and Ross and Kelen and Tüdös methods for the systems TMA-MMA, TMA-St, TMA-AN and TMA-VA and were found to be r 1 = 0.59 ± 0.05, r 2 = 2.72 ± 0.03; r 1 = 0.39 ± 0.02, r 2 = 0.90 ± 0.01; r 1 = 0.77 ± 0.06, r 2 = 1.99 ± 0.04 and r 1 = 0.80 ± 0.08, r 2 = 0.40 ± 0.05 respectively (r 1 corresponds to monomer reactivity ratio of TMA). The Q and e values for TMA monomer were found to be 1.079 and ?0.054. The synthesized monomer and polymers were tested in vitro for biological activity against some microorganisms, using the disk diffusion technique. Generally, all the polymers were effective against the tested microorganisms, but their growth-inhibition effects varied.  相似文献   

14.
The synthesis of poly(VDF‐co‐TFMA) copolymers (where VDF and TFMA stand for vinylidene fluoride and α‐trifluoromethacrylic acid, respectively) by iodine transfer polymerization without any surfactant is presented. First, the synthesis and the control of the copolymerization of VDF and TFMA were investigated in the presence of two chain transfer agents, 1‐perfluorohexyl iodide (C6F13I) and 1,4‐diodoperfluorobutane (IC4F8I). TFMA monomer was incorporated in the copolymer in good yields. Moreover, the molecular weights of the resulting poly(VDF‐co‐TFMA) copolymers were in good agreement with the theoretical values for feed of TFMA/VDF ratios that ranged from 50/50 to 0/100 mol %, showing that TFMA does not disturb the controlled radical polymerization of VDF. The microstructures of the produced copolymers were characterized by 1H and 19F NMR to assess the amount of each comonomer, and the molecular weights and the end‐groups of the copolymers. The results on the control of the copolymerization were compared to those obtained with and without the presences of TFMA and surfactant. The addition of a low amount of TFMA improved the control of the polymerization of VDF without using any surfactant. Also, the size of particles, assessed by light scattering, was smaller than 200 nm. The addition of TFMA in low proportions, that is, 5 to 10 mol %, enabled us to stabilize the particle size and to decrease the size by one order of magnitude. The emulsifying behavior of TFMA (in low amount in the copolymer, that is, <10 mol %) was similar to those achieved when a surfactant was added. Indeed, neither sedimentation nor destabilization was observed after several days. The reactivity ratios for rTFMA and rVDF were 0 and 1.6 at 80 °C, respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4710–4722, 2009  相似文献   

15.
Radical copolymerization of styrene (St, M1) with acrylonitrile (AN, M2) has been carried out using azobisisobutylonitrile as an initiator in benzene, dimethylsulfoxide, acetonitrile, and ethanol at 60 and 80°C. Good linear correlationships were obtained by plotting the values of log r1, log r2, Q2, and e2 against those of vC[dbnd]N and vC[dbnd]C determined in the solvents: the increase in the interaction between AN and the solvent was found to decrease the values of log r1 and e2 but to increase those of log r2 and Q2. The results are discussed in terms of the solvation both in the ground state and in the transition state.  相似文献   

16.
New epoxy-containing cyclopropylstyrenes were synthesized and their copolymerization with styrene in benzene in the presence of AIBN was studied. The reactivity ratios of cyclopropylstyrenes (r 1) and styrene (r 2) range from 1.15 to 1.18 and from 0.55 to 0.58, respectively, and the parameters Q 1 and e 1 vary over 2.86–3.07 and 1.43–1.45, respectively. The photosensitivity and some mechanical properties of the synthesized copolymers were estimated.  相似文献   

17.
Radical copolymerization based on acrylonitrile (AN) and 2,2,2‐Trifluoroethyl acrylate (ATRIF) initited by AIBN was investigated in acetonitrile solution. The resulting poly(AN‐co‐ATRIF) copolymers were characterized by 1H, 13C, and 19F NMR and IR spectroscopy, and size exclusion chromatography (SEC). Their compositions were assessed by 1H NMR. The kinetics of radical copolymerization of AN with ATRIF was investigated from sereval experiments achieved at 70 °C from initial [AN]0/[ATRIF]0 molar ratios ranging between 20/80 and 80/20 and was enabled to determine the reactivity ratios of both comonomers. From the monomer—polymer copolymerization curve, the Fineman–Ross and Kelen–Tüdos laws enabled to assess the reactivity ratios (rAN= r1 = 1.25 ± 0.04 and rATRIF = r2 = 0.93 ± 0.05 at 70 °C) while the revised patterns scheme led to r12 = rAN = 1.03, and r21 = rATRIF = 0.78 at 70 °C. In all cases, rAN x rATRIF product was close to unity, which indicates that poly(AN‐co‐ATRIF) copolymers exhibit a random structure. This was also confirmed by the Igarashi's and Pyun's laws which revealed the presence of AN‐ATRIF, AN‐AN, and ATRIF‐ATRIF dyads. The Q and e values for ATRIF were also assessed (Q2 = 0.62 and e2 = 0.93). The glass transition temperature values, Tg, of these copolymers increased from 17 to 61 °C as the molar percentage of ATRIF decreased from 77 to 16% in the copolymer. Thermogravimetry analysis of poly(AN‐co‐ATRIF) copolymers showed a good thermal stability compared to that of poly(ATRIF) homopolymer due to incorporation of AN comonomer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3856–3866  相似文献   

18.
The copolymerization of 4-cyclopentene-1,3-dione (M2) with p-chlorostyrene and vinylidene chloride is reported. The copolymers were prepared in sealed tubes under nitrogen with azobisisobutyronitrile initiator. Infrared absorption bands at 1580 cm.?1 revealed the presence of a highly enolic β-diketone and indicated that copolymerization had occurred. The copolymer compositions were determined from the chlorine analyses and the reactivity ratios were evaluated. The copolymerization with p-chlorostyrene (M1) was highly alternating and provided the reactivity ratios r1 = 0.32 ± 0.06, r2 = 0.02 ± 0.01. Copolymerization with vinylidene chloride (M1) afforded the reactivity ratios r1 = 2.4 ± 0.6, r2 = 0.15 ± 0.05. The Q and e values for the dione (Q = 0.13, e = 1.37), as evaluated from the results of the vinylidene chloride case, agree closely with the previously reported results of copolymerization with methyl methacrylate and acrylonitrile and confirm the general low reactivity of 4-cyclopentene-1,3-dione in nonalternating systems.  相似文献   

19.
Vinyl-type monomers containing the pyrrole ring, such as 2-vinylpyrrole (2-VPyrr), N-(pyrrol-2-yl)methylacrylamide (PMA), N-methyl, N-(pyrrol-2-yl)methylacrylamide (MPMA), 2-allylpyrrole (2-AP), β-(pyrrol-1-yl)ethyl vinyl ether (PEVE), 2-diallyl-aminomethylpyrrole (DAMP), and 3-(2-pyrrolylmethyleneimino)propene-1 (PIP) were synthesized by various reactions involving characteristic properties of the pyrrole ring. Radical homopolymerizations and copolymerizations of these monomers were studied. In the homopolymerization of conjugated monomers such as 2-VPyrr and PMA, chain transfer to the pyrrole-containing monomer was remarkable but not degradative. The copolymerization parameters, that is, the values of r1, r2, Q1, and e1 of 2-VPyrr, were determined to be 0.066, 0.69, 5.53, and ?1.36, respectively in the copolymerization of 2-VPyrr (M1) with MMA (M2). The Q and e values of the monomers containing a heteroaromatic ring such as 2-vinylpyrrole, 2-vinylfuran, and 2-vinylthiophene were evaluated by the molecular orbital theory. The e value of PMA was found to be negative (?0.64) in the copolymerization with styrene, although e for acrylamide derivatives is generally positive. This may be explained by the intermolecular hydrogen bonding between the carbonyl group and NH group of PMA. That is, attraction or polarization of π-electrons in the vinyl group of PMA is weakened by such hydrogen bonding. From the results of copolymerization of 2-AP with various comonomers, the comonomers could be classified into three categories: class a monomers, in which both Q and e values are largely positive, can copolymerize with 2-AP; class b monomers, having small e values, homopolymerize and can not copolymerize with 2-AP; class c monomers, in which both Q and e values are small. The Q and e values of the comonomer must be largely positive in order to permit copolymerization with an allyl-type monomer.  相似文献   

20.
The synthesis of [1‐(fluoromethyl)vinyl]benzene (or α‐(fluoromethyl)styrene, FMB) and its radical copolymerization with chlorotrifluorethylene (CTFE), initiated by tert‐butyl peroxypivalate (TBPPi) are presented. The allyl monomer [H2C = C(CH2F)C6H5] was obtained by electrophilic fluorodesilylation of trimethyl(2‐phenylprop‐2‐en‐1‐yl)silane in 93% yield. A series of seven copolymerization reactions were carried out starting from initial [CTFE]0/([FMB]0 + [CTFE]0) molar ratios ranging from 19.6 to 90.0 mol %. The molar compositions of the obtained poly(CTFE‐co‐FMB) copolymers were assessed by means of 19F nuclear magnetic resonance spectroscopy. Statistic copolymers were produced with molar masses ranging between 13,800 and 25,600 g/mol. From the Kelen and Tudos method, the kinetics of the copolymerization led to the determination of the reactivity ratios, ri, of both comonomers (rCTFE = 0.4 ± 0.2 and rFMB = 3.7 ± 1.8 at 74 °C) showing that FMB is more reactive than CTFE as well as other halogenated or nonhalogenated monomers involved in the radical copolymerization with CTFE. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3843–3850, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号