首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Statistical copolymers 5 containing poly(2-dimethyloctylsilyl-1,4-phenylenevinylene) (DMOS-PPV) and poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) have been synthesized using the dehydrohalogenation condensation route. The copolymers show a shift of photoluminescence maxima to longer wavelengths as the proportion of the MEH-PV unit increases. This trend is accompanied by reduced efficiencies and lower turn-on voltages in single layer electroluminescent devices. Light-emitting electrochemical cells (LECs) have been prepared using a blend of DMOS-PPV 1 with poly(ethylene oxide)/lithium triflate and the homopolymer poly[2-methoxy-5-(triethoxymethoxy)-1,4-phenylene vinylene] (MTEM-PPV) 9 with lithium triflate. In comparison with single-layer devices which were fabricated using the homopolymers 1 and poly[2,5-bis(triethoxymethoxy)-1,4-phenylene vinylene] (BTEM-PPV) 10 , the LEC devices showed lower turn-on voltages.  相似文献   

2.
The design, synthesis and characterization of three novel fluorene-alt-thienylenevinylene-based copolymers have been reported. All these polymers consist of similar repeating unit, while thiophene unit with different substitution position is incorporated to well tune the conjugation degree that realizes multi-color luminance. These polymers show emission maxima in the blue, orange and red region of the visible spectrum. Considering the compatibility of luminescent materials with similar structure units, our methodology provides a facile and effective way for designing multi-color luminescent polymeric blending to realize full color electroluminescent (EL) devices. All these polymers have been successfully tested in single-layer sandwiched EL devices.  相似文献   

3.
Through a rational design, a novel Donor-Acceptor π-conjugated (D-π-A) blue fluorescent indenofluorene dye, DA-DSF-IF, has been synthesized for application in single-layer Small Molecule Organic Light Emitting Diodes (SMOLEDs). This new blue emitter possesses bipolar properties as well as good morphological and emission color stabilities and has been successfully used in a blue emitting single-layer SMOLED, with performances impressively magnified compared to a nonbipolar indenofluorene emitter.  相似文献   

4.
A new class of bisindole-based red fluorescent materials was prepared and used as non-doping red emitters to give the devices emitting saturated red colour at about 650 nm with a chromaticity coordinate of (x = 0.64, y = 0.34), matching the CIE 1931 standard red color very well.  相似文献   

5.
含铽三元共聚物的合成及其发光性能研究   总被引:4,自引:0,他引:4  
报道了新型的可平衡电荷(空穴与电子)传输的稀土铽-聚合物发光材料的合成, 将稀土铽配合物单体与乙烯基咔唑、甲基丙烯酸甲酯共聚制得含咔唑和稀土铽配合物的HTL-EML-ETL三功能合一的聚合物, 通过FT-IR, GPC, NMR及元素分析对其结构进行表征, 并研究了这类材料的光致及电致发光性能. 在含铽三元共聚物的薄膜荧光中, 来自咔唑基的荧光出现“固态猝灭”, 而来自稀土铽离子的荧光则明显加强, 这是由于二者的失活机制不同引起的. 以含铽三元共聚物制作的单层器件主要发射铽离子的特征荧光.  相似文献   

6.
合成了可平衡电荷(空穴与电子)传输的三功能合一的稀土铕发光材料,将几种稀土铕络合物单体与乙烯基咔唑、甲基丙烯酸甲酯共聚制得含咔唑和稀土铕络合物的空穴传输层发光层电子传输层(HTLEMLETL)三功能合一的聚合物,并研究它们的电化学及电致发光性能.电化学分析表明这类三元共聚物兼有氧化性和还原性,氧化电位及还原电位分别为0.75V和-1.8V左右,可见这类材料同时具有空穴传输和电子传输功能.从测定的电致发光谱看,AlQ3、TPD及咔唑基等发光单元在器件中没有共发光,而是起电荷传输作用,以这些材料制作的电致发光器件所发的红光纯度都比较高.  相似文献   

7.
杜学锋  莫越奇  田仁玉  曹镛 《应用化学》2007,24(12):1359-1363
采用NiCl2催化的Yamamoto缩聚反应将不同比例的含噻吩单体与间苯单体共聚,合成了聚(5-(2-乙基己氧基)-1,3-苯撑-co-(2,5-二苯撑-4-基-噻吩))(PmP-DPT),并测试了4种不同比例共聚物的紫外-可见光吸收光谱,光致发光光谱和LED器件的电致发光光谱,系统地表征了共聚物的光电性能。结果表明,噻吩的加入形成了新的发光中心,实现了从间苯链段到含噻吩发光中心的有效能量转移,当噻吩摩尔分数约为1%时,可得到效率为0.47%的色坐标(CIE)为0.17和0.13的蓝光PLED器件。当噻吩摩尔分数为10%时,可得到效率为2.59%的色坐标(CIE)为(0.21,0.36)的蓝绿光PLED器件。  相似文献   

8.
A new strategy to realize efficient white‐light emission from a binary fluorene‐based copolymer (PF‐Phq) with the fluorene segment as a blue emitter and the iridium complex, 9‐iridium(III)bis(2‐(2‐phenyl‐quinoline‐N,C3′)(11,13‐tetradecanedionate))‐3,6‐carbazole (Phq), as a red emitter has been proposed and demonstrated. The photo‐ and electroluminescence properties of the PF‐Phq copolymers were investigated. White‐light emission with two bands of blue and red was achieved from the binary copolymers. The efficiency increased with increasing concentration of iridium complex, which resulted from its efficient phosphorescence emission and the weak phosphorescent quenching due to its lower triplet energy level than that of polyfluorene. In comparison with the binary copolymer, the efficiency and color purity of the ternary copolymers (PF‐Phq‐BT) were improved by introducing fluorescent green benzothiadiazole (BT) unit into polyfluorene backbone. This was ascribed to the exciton confinement of the benzothiadiazole unit, which allowed efficient singlet energy transfer from fluorene segment to BT unit and avoided the triplet quenching resulted from the higher triplet energy levels of phosphorescent green emitters than that of polyfluorene. The phosphorescence quenching is a key factor in the design of white light‐emitting polyfluorene with triplet emitter. It is shown that using singlet green and triplet red emitters is an efficient approach to reduce and even avoid the phosphorescence quenching in the fluorene‐based copolymers. The strategy to incorporate singlet green emitter to polyfluorene backbone and to attach triplet red species to the side chain is promising for white polymer light‐emitting diodes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 453–463, 2008  相似文献   

9.
We report on photocrosslinkable hole‐transport polymers and their use as photodefinable hole‐transport layers in organic light‐emitting diodes. The polymers were obtained by copolymerization of bis(diarylamino)biphenyl‐based acrylate monomers with cinnamate‐functionalized acrylate moieties. Polymers with a range of redox potentials were obtained by varying the substitution patterns of the bis(diarylamino)biphenyl units. The 2 + 2 cycloaddition of the cinnamate moieties following UV irradiation renders the material insoluble. This allows for patterning of the polymer and simultaneously enables the fabrication of multilayer structures from solution. Hole mobilities were measured in these copolymers with the time‐of‐flight technique. Their performance as hole‐transport layers in light‐emitting diodes, with tris(8‐hydroxyquinolinato)aluminum as the emitter and electron‐transport layer, is evaluated. Electroluminescent devices with multiple hole‐transport layers having different ionization potentials were fabricated from solution, and the quantum efficiency of these devices was greater than that for devices based on a single hole‐transport layer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2726–2732, 2003  相似文献   

10.
Based on a p-type scaffold, a novel solution-processable phosphonate functionalized deep-blue fluorescent emitter has been designed and synthesized. The corresponding non-doped single-layer SMOLED shows a peak current efficiency of 0.76 cd A(-1) with CIE coordinates of (0.15, 0.09), which is about three orders of magnitude higher than that of the prototype with tert-butyl substituents.  相似文献   

11.
Efficient white light emitting polymers were synthesized based on poly(9,9-dioctylfluorene-co-dibenzothiophene-S,S-dioxide) as blue emitter and a bisphenylamine functionalized 2,1,3-benzothiadiazole (DPABT) as red emitter. It was found that the incorporation of hole-transporting carbazole moiety into polymer main chain could effectively reduce the hole injection barriers, which can lead to distinctly improved charge balance in the emissive layer. Additionally, the hole-transporting carbazole units may form efficient bipolar host with electron-transporting dibenzothiophene-S,S-dioxide units. The white light emitting diodes based on single polymer PFSOCzDPABT showed the maximum luminous efficiency of 3.3 cd/A with the maximum luminance of 10282 cd/m2 , and the luminous efficiency showed only 24% roll off at current density of 400 mA/cm2 . These Commission Internationale d’Enclairage (CIE) coordinates of the devices changed slightly with the driving voltages increasing from 8 V to 12 V, and were very close to National Television System Committee (NTSC) standard white light emission of (0.33, 0.33). The results indicated that the incorporating bipolar host and low band gap DPABT unit was a promising way to achieve efficient single white light emitting copolymers.  相似文献   

12.
Nonconjugated bipolar transport polymers have been developed as host materials for electroluminescent devices by incorporating both electron‐transporting and hole‐transporting functionalities into copolymers. The random copolymer PCt‐nvk3‐7 containing mesogen‐jacketed segment of P‐Ct have been synthesized and characterized. The effect of mesogen‐jacketed segment content of these bipolar copolymers on device performance has been investigated. The results of polymer light‐emitting diodes (PLEDs) show that the jacketed content of copolymers has a significant effect on device performance: lowering charge transport and facilitating the hole‐electron recombination leads to much higher current efficiency. Applying these high triplet random copolymers as host, the maximum current efficiency of 0.70 cd/A and the maximum brightness of 1872.8 cd/m2 was achieved for PCt‐nvk3‐7 with an orange‐emitting complex dopant. The results suggest that the bipolar copolymers PCt‐nvks can be good host polymers for electrophosphorescent devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7861–7867, 2008  相似文献   

13.
Soluble conjugated copolymers (PFN-TPA) derived from 2,1,3-benzothiadiazole (BTDZ), triphenylamine (TPA) and 9,9-bis(3′-(N,N-dimethylamino)propyl)fluorene (DMAPF) were synthesized by palladium(0)-catalyzed Suzuki coupling reactions. Optoelectronic properties of the copolymers were characterized by UV-vis absorption, cyclic voltammetry, photoluminescence and electroluminescence. All these copolymers show excellent EL performances in the devices with Ba/Al, Al and even Au as cathode and are promising candidate for fabrication and patterning of air-stable flat panel displays.  相似文献   

14.
The commercial breakthrough of phosphorescent organic white light sources is presently hampered due to the unavailability of a stable blue phosphorescent emitter material. Moreover, only few analytical investigations have been made regarding the chemical degradation of the phosphorescent emitter materials during the processing or the operation of the devices. Organic light emitting devices (OLEDs) containing phosphorescent metal complexes with iridium as central ion were investigated. Special attention was paid to the chemical degradation of the material. The devices were analyzed by means of high performance liquid chromatography coupled with mass spectrometry (HPLC/MS). Electron spray ionization (ESI) was employed as ionization source. Isomerization phenomena of the blue-green emitting heteroleptic iridium complex FIrpic could be observed after the device manufacture and after operation. These findings could give hints on the mechanisms that influence the lifetime of PhOLEDs based on FIrpic or similar blue emitters.  相似文献   

15.
Series of high molecular weight, readily soluble copolymers were synthesized by Suzuki palladium catalyzed coupling reaction from 9,9-dioctylfluorene and 2,3-dimethylnaphthopyrazine. The absorption, electrochemical and photoluminescence properties of the copolymers were studied. The external electrolu-minescence efficiencies in the devices of configuration indium-tin oxide/polyethylenedioxythiophene-polystyrene sulfonic acid/poly(fluorene-naphthopyrazine)/barium/aluminium varied with the copolymers composition, and the electroluminescence emission peaks of the copolymers were red-shifted from 530 nm to 584 nm as 2,3-dimethylnaphthopyrazine mole contents increasing from 0.5% to 30%. The best device performance was observed for devices fabricated with the copolymer of 2,3-dimethylnathphpyrazine 5% mole contents, showed maximum external quantum efficiency of 1.38% and electroluminescence peaks at around 537 nm.  相似文献   

16.
A green-light-emitting iridium(III) complex was prepared that has a photoluminescence quantum yield in a thin-film configuration of almost unity. When used in a simple solid-state single-layer light-emitting electrochemical cell, it yielded an external quantum efficiency of nearly 15% and a power efficiency of 38 Lm/W. We argue that these high external efficiencies are only possible if near-quantitative internal electron-to-photon conversion occurs. This shows that the limiting factor for the efficiency of these devices is the photoluminescence quantum yield in a solid film configuration. The observed efficiencies show the prospect of these simple electroluminescent devices for lighting and signage applications.  相似文献   

17.
Two styrene/maleimiade copolymers with pendant azobenzene chromophores, poly(styrene-1-(4-phenylazo-phenyl)-pyrrole-2,5-dione) (PS-DP) and poly((4-vinyl-benzyl)-9H-carbazole-1-(4-phenylazo-phenyl)-pyrrole-2,5-dione) (PVCz-DP), were synthesized. The polymeric memory devices based on each of the two polymer films (ITO/Polymer/Al) show similar rewritable flash memory behaviors but different transition voltages. By introduction of carbazole groups in the polymer side chains, the voltage difference from OFF to ON state of ITO/PVCz-DP/Al is reduced obviously in comparison with that of ITO/PS-DP/Al, which is beneficial to the protection of devices. Both ITO/PS-DP/Al and ITO/PVCz-DP/Al show high stability under a constant stress or continuous read pulses voltage of 1.0 V. The memory mechanism is governed by space-charge limited conduction (SCLC) on the basis of the IV curves of these fabricated memory devices. With excellent flash memory characteristics and simple processability, the memory devices fabricated with these two styrene/maleimiade copolymers have potential applications for the future electronic memory devices.  相似文献   

18.
以双极性小分子4,9-二(4-(2,2-二苯乙烯基)苯基)萘并[2,3-c][1,2,5]噻二唑(BDPNTD)为发光层,制备得到了单层非掺杂红色荧光有机发光二极管.通过在阳极ITO与有机层BDPNTD之间插入1nm厚的WO3或MoO3薄膜,获得了单层有机发光二极管:起亮电压为2.4V,最大发光亮度为4950cd·m-2,发光波长为636nm,CIE坐标约为(0.65,0.35).这证明了作为修饰层的WO3或MoO3薄膜可以改进ITO/BDPNTD界面的空穴注入,进而在器件中实现空穴与电子的平衡.  相似文献   

19.
Liao YL  Lin CY  Wong KT  Hou TH  Hung WY 《Organic letters》2007,9(22):4511-4514
A novel ambipolar spiro-configured D-A blue-light emitter bearing hole-transporting diphenylamino groups and electron-transporting phenylbenzimidazole groups was synthesized, characterized, and incorporated into an efficient single-layer organic light-emitting diode (OLED) device exhibiting blue-emission Commission International d'Eclairage (CIE) coordinates of 0.15 and 0.14, a turn-on potential of 4 V, a maximum brightness of 2800 cd/m2 at 830 mA/cm2 (19 V), and a maximum quantum efficiency of 0.53% (0.61 cd/A).  相似文献   

20.
New π-conjugated copolyfluorenes carrying main-chain electron-acceptor triazole groups and side-chain electron-donor carbazole fragments are synthesized. All copolymers show solubility in common organic solvents and exhibit high thermal stability and excellent film-forming behavior. The absorption, photoluminescent, electroluminescent, and electrochromic properties of the copolymers are investigated. Polymer films feature stable electrochromic properties as their color changes from yellow in the neutral from to lilac in the oxidized form during a change in the applied voltage from 0 to 1.9 V. In addition, copolyfluorenes demonstrate better electroluminescent properties than the standard homopolylfluorene and offer promise as attractive electroactive materials for use as emitting layers in polymer light-emitting devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号