首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biodegradable, injectable and in situ crosslinkable polymer networks based upon di(propylene fumarate)-dimethacrylate (DPFDMA) and polycaprolactone trimethacrylate (PCLTMA), were prepared and characterized. The polymer networks were initiated by photopolymerization. The initial compressive (CS) and diametral tensile strengths (DTS) of the networks materials were determined and used to evaluate the effects of PCLTMA/DPFDMA ratios on the degradation behavior. The networks exhibited initial DTS values ranging from 2.5 to 9.3 MPa and CS values ranging from 1.8 to 146.0 MPa. The increase of PCLTMA in the formulation led to an increase in viscosity and DTS. The degree of conversions and polymerization shrinkage of the resins ranged from 60% to 72% and 5.1% to 6.4%, respectively. After 6 month, PCL300TMA/DPFDMA resins at a ratio of 100/0, 75/25 and 25/75 lost 70%, 87% and 46% of their initial CS, respectively, while PCL900TMA/DPFDMA and PCL300TMA/PCL900TMA resins at 75/25 lost 100% and 83% of their initial CS, respectively.  相似文献   

2.
Biodegradable trifunctional oligomer was synthesized from polycaprolactone and glutamic acid and characterized by Fourier‐transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopies. Injectable and in situ crosslinkable polymer networks were fabricated by the copolymerization of oligomer with triethylene glycol dimethacrylate (TEGDMA) and used to evaluate the initial compressive strengths, viscosities, shrinkages, thermal stabilities, and biodegradabilities in the forms of polymer network neat resin and their composites with β‐tricalcium phosphate. The initial compressive strengths (CS) values of neat resins ranged from 9.54 to 187.6 MPa. Both neat resins and composites had polymerization shrinkage ranging from 0% to 11.7%, which increased with increasing of TEGDMA contents in resin. Moreover, in polymer composite resins, shrinkage values decreased with increasing filler level from 0% to 4.6%, and exothermic evolution values decreased from 33.5°C to 29.7°C as increasing filler level. The composite with the formulation of (polycaprolactone)‐glutamate triacrylate (PCLGTA)/TEGDMA (25/75) and powder/liquid (P/L) ratio of 1.0 exhibited the highest exothermal and lowest shrinkage values. The increase of oligomer in the formulation led to an increase in viscosity.  相似文献   

3.
ABSTRACT

Two novel trimethacrylates, i.e., 1,1,1-tri-[4-(methacryloxyethoxy)-phenyl] ethane (TMPE) and 1,1,1-tri-[4-(2-methyl-2-methacryloxyethoxy)-phenyl]ethane (TMMPE), have been synthesized by reacting methacryloyl chloride with the corresponding hydroxyl intermediates. Both trimethacrylate monomers, having a low viscosity of 11.5 and 13.1 Pa.S, respectively, were blended with TEGDMA at three different weight ratios, i.e., 90/10, 70/30, and 50/50. The mixtures were made visible light-curable (VLC) by the addition of camphorquinone (0.5 wt%) and N,N-dimethyl-aminoethyl methacrylate (1.0 wt%). In addition to evaluation as cured neat resins, VLC formulations with 70% by wt. of silanated microfiller were also prepared and evaluated. The control in both cases was a VLC formulation of BisGMA/TEGDMA (70/30 and 50/50 wt/wt). These new, formulated resins have both improved physical properties and higher double bond conversion than the BisGMA control, as well as decreased linear polymerization shrinkage (LPS). The neat resin having 70/30 (wt/wt) ratio of TMPE/TEGDMA (T7T3, Table 2) exhibited a compressive strength (CS) of 496 (±51) MPa compared to the 70/30 (wt/wt) ratio of BisGMA/-TEGDMA control having 425(±27) MPa. A filled resin having a 90/10 (wt/wt) ratio of TMPE/TEGDMA exhibited a flexural strength (FS) of 122.6(±23) MPa, compared with a similar filled BisGMA/TEGDMA (70/30, wt/wt) resin exhibiting 112.7(±19) MPa. These and other results suggest that these new trimethacrylates have potential application in formulating dental composites with improved performance.  相似文献   

4.
Abstract

In the study, dental composites of color A2 using Bis-GMA/UDMA/TEGDMA resins (ratios 70/10/20), and silica filler (70%wt, 75%wt, and 80%wt) which is a hybrid of two silica types in nano and micro dimensions were made using two different photoinitiators namely BAPO and camphorquinone. The optimum photoinitiator was selected based on the mechanical tests results after which the composites were subjected to the following tests: FTIR to evaluate polymerization degree, microhardness test, UTM, and SEM micrographs were taken to analyze the surface fracture of samples. The results of photoinitiator selection (flexural strength test) is 36.54?MPa, 37.62?MPa, and 75.08?MPa for BAPO?+?camphorquinone, camphorquinone, and BAPO respectively. The results show that the BAPO photoinitiator exhibits better results over camphorquinone and also BAPO/camphorquinone initiator systems. Then after choosing the photoinitiator system composites with different filler contents show higher mechanical strength than existing dental composites. The results of the mechanical tests for the composites with different filler contents synthesized after initiator system selection were significantly higher than the values specified in ISO 4049:2009 (102?MPa over 80?MPa). FTIR results indicate that the degree of conversion in these composite is 25.41%, 37.68, and 40.94% for composites with different filler amounts.  相似文献   

5.
Flexible composite films were produced by impregnating aqueous phenol formaldehyde (PF) resin into water-swollen cellulose nanofibril (CNF) films. CNF films were prepared using a pressurized filtration method in combination with freeze drying. The freeze-dried films were swollen with water then impregnated with PF resin by soaking in aqueous resin solutions of varying concentrations. Small amounts of PF slightly enhanced the tensile properties of CNF films. The formulation with the best mechanical properties was CNF/PF films with 8 wt % resin exhibiting tensile stress and toughness of 248 MPa and 26 MJ/m3, respectively. Resin concentrations higher than about 8 % resulted in composites with decreased tensile properties as compared to neat CNF films. The wet strength of the composite films was significantly higher than that of the neat CNF films. The resulting composites showed greater resistance to moisture absorption accompanied by reduced thickness swelling when soaked in water as compared to neat CNF films. The composites also showed decreased oxygen permeability at low humidity compared to neat films, but the composites did not show improved barrier properties at high humidity.  相似文献   

6.
An attempt has been made to develop hybrid composites from benzoxazine monomer (C-ddm) hybridized with DGEBA epoxy resin (EP) and reinforced with varying weight percentages (20 wt%, 40 wt%, 60 wt%, 80 wt% and 100 wt%) of glycidoxypropyltrimethoxy- silane (GPTMS) functionalized granite dust (GD) obtained from industrial granite cutting and polishing process in order to utilize them for electrical insulation applications. The thermal stability of granite dust reinforced poly(EP-co-C-ddm) composites was studied by TGA analysis. Among the composites samples studied, 100 wt% GD reinforced poly(EP-co-C-ddm) composites possess better thermal stability than that of other neat matrices and composites. Among the composites prepared using varying weight percentages of functionalized GD reinforcement, it was observed that 80 wt% GD reinforced poly(EP-co-C-ddm) composites possesses better hydrophobic character than that of other neat matrices and composites. The value of LOI calculated for neat matrix (poly[EP-co-C-ddm]) and 20 wt%, 40 wt%, 60 wt%, 80 wt% and 100 wt% GD reinforced composites was found to be 22, 28, 34, 40, 43 and 45 respectively. The 80 wt% GD reinforced poly(EP-co-C-ddm) composites possess the higher values of tensile strength and flexural strength of 47 MPa and 140 MPa, respectively than those of their samples. The values of electrical surface resistivity and electrical volume resistivity of all the neat matrices and GD reinforced polybenzoxazine composites were found to be in the order of 1012 and 1013 respectively. The values of dielectric strength obtained from break down voltage (BDV) for neat matrix [poly(EP-co-C-ddm)] and 20 wt%, 40 wt%, 60 wt%, 80 wt% and 100 wt% of GD reinforced poly(EP-co-C-ddm) composites are 15.0, 15.5, 16.5, 17.0, 17.0 and 17.0 kV/mm, respectively. Data obtained from thermal stability, hydrophobic behavior and dielectric studies it was inferred that the hybrid polymer composites developed in the present work can be conveniently used in the form insulators, sealants, adhesives and matrices where application demands at high-performance industrial and engineering applications.  相似文献   

7.
This note presents approximate analytical expressions for the velocity of the self-propagating reaction front in the frontal polymerization of thermoset polymers and composites. Prior estimates available in the literature for the front velocity have been limited by their applicability to simple reaction kinetics. The improved estimates provided in this work are shown to be applicable to complex reaction kinetics encountered in the frontal polymerization of neat thermoset polymers or fiber-reinforced polymer-matrix composites with a wide range of polymer chemistries, including dicyclopentadiene, cyclooctadiene, acrylates, and epoxies. They are also shown to be applicable to wide range of values of the initial temperature and initial degree of cure of the resin, and of the volume fraction of the reinforcing phase.  相似文献   

8.
Abstract

To explore new VLC oligomers exhibiting low shrinkage, low water sorption, and improved mechanical properties, a family of multi-methacrylates, based on poly(isopropylidenediphenol) resin (BPA), was synthesized, characterized, and evaluated. The BPA resin, having an average of eight phenolic hydroxyl groups per molecule, was treated with ethylene carbonate and the resultant product esterified at four different grafted levels, using methacryloyl chloride. Structures of these EEBPA oligomers, were confirmed by FT-IR and 13C NMR. The EEBPA oligomer/TEGDMA (50/50, w/w) blends were combined with 0.5 wt% camphoroquinone(CQ) and 1.0 wt% N,N-dimethylaminoethyl methacrylate (DMAEM). The control was BisGMA/TEGDMA (50/50, w/w) blends having the same levels of CQ/DMAEM. Differential photocalorimetry (DPC) and differential scanning calorimetry (DSC) showed the multi-methacrylate/TEGDMA (neat resin) blends have polymerization characteristics comparable to the BisGMA/TEGDMA control. These multi-functional oligomers have lower polymerization shrinkage and lower uptake of water and other liquids. In addition, two experimental oligomers EEBPA #2 and #3 have higher compressive strength than the BisGMA and comparable diametral tensile strength to the BisGMA control. These results suggest that the new type of multi-functional methacrylate oligomers (EEBPA) have potential application in formulating dental composites with improved properties.  相似文献   

9.
Vinyl-containing poly(acrylic acid-co-itaconic acid) copolymers were synthesized and used to formulate light-curable cements containing reactive glass fillers (Fuji II LC). The conditions for light curing were studied and optimized. Effects of molecular weight (MW), grafting ratio, comonomer, liquid composition, powder/liquid (P/L) ratio, glass powder and aging were evaluated. The results show that the vinyl-containing glass-ionomer cements (GICs) prepared in this study exhibit higher compressive strength (CS, 225.6 MPa), diametral tensile strength (DTS, 28.4 MPa) and much higher flexural strength (FS, 116.4 MPa), as compared to commercial Fuji II LC GIC (186.6 in CS, 19.1 in DTS and 57.1 in FS). The optimal light-exposure time was found to be around 10 min, and concentrations of CQ and DC were 0.5% (by weight) and 1.0%, respectively. Effects of MW, grafting ratio, P/L ratio and content of polymer in the liquid formulation were significant. The highest strengths were found for the optimal formulations where the MW was 15,000 (weight average), grafting ratio 25 mol%, P/L ratio 2.7 and liquid composition 50:20:30. During aging, the cement showed an increase of strength over the first week and then no change for a month. SEM analysis suggests that more integrated microstructures and smaller glass particles can lead to higher FS and higher polymer content in GICs leads to tough fracture surface and plastic deformation.  相似文献   

10.
A new surface modification method of hydroxyapatite nanoparticles (n‐HA) by surface grafting reaction of L ‐lactic acid oligomer with carboxyl terminal (LAc oligomer) in the absence of any catalyst was developed. The LAc oligomer with a certain molecular weight was directly synthesized by condensation of L ‐lactic acid. Surface‐modified HA nanoparticles (p‐HA) were attested by Fourier transformation infrared spectroscopy, 31P MAS‐NMR, and thermal gravimetric analysis (TGA). The results showed that LAc oligomer could be grafted onto the n‐HA surface by forming a Ca carboxylate bond. The grafting amount of LAc oligomer was about 13.3 wt %. The p‐HA/PLLA composites showed good mechanical properties and uniform microstructure. The tensile strength and modulus of the p‐HA/PLLA composite containing 15 wt % of p‐HA were 68.7 MPa and 2.1 GPa, respectively, while those of the n‐HA/PLLA composites were 43 MPa and 1.6 GPa, respectively. The p‐HA/PLLA composites had better thermal stability than n‐HA/PLLA composites and neat PLLA had, as determined by isothermal TGA. The hydrolytic degradation behavior of the composites in phosphate buffered saline (PBS, pH 7.4) was investigated. The p‐HA/PLLA composites lost their mechanical properties more slowly than did n‐HA/PLLA composites in PBS because of their reinforced adhesion between the HA filler and PLLA matrix. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5177–5185, 2005  相似文献   

11.
Thermosetting resin matrix is the key component of advanced wave-transparent composites,where low dielectric constant,excellent processability,high thermal stability,as well as good bonding ability are required for resins.Herein,we prepared a series of phenylethynyl terminated polyimide(PI)resins by grafting amine-functionalized hyperbranched polysiloxane(HBPSi)to PI chains during the in situ polymerization.The effects of HBPSi on the processability of oligomers,molecular packing,thermal stability,dielectric property and bonding ability to reinforce Kevlar fibers of the cured PI/HBPSi composite resins have been examined in detail.The dielectric constants of the cured composite resins were greatly reduced from 3.29 to 2.19 without compromising its processability and thermal stability.Meanwhile,the 10 wt%HBPSi-containing PI resin demonstrated better bonding ability to reinforce fibers with the interfacial shear strength(IFSS)of 37.64 MPa,compared with that of neat PI-6 matrix(27.34 MPa),and better adhesion to metal with the lap shear strength of 10.48 MPa,50%higher than that of neat resin PI-6(6.98 MPa).These resultant PI/HBPSi composite resins exhibit excellent comprehensive properties,indicating their great potential as low-dielectric constant resin matrix in radar radome.  相似文献   

12.
以水热法合成的BaTiO3纤维和同步法制备的互穿聚合物网络为原料,采用原位分散聚合法获得了一系列BaTiO3/(PU/UP-IPNs)复合材料。采用傅立叶交换红外分光光度计跟踪考察了IPNs的聚合过程,用透射电镜观测了IPNs及其复合物的形貌。结果表明,IPNs中两相相畴尺寸在纳米级范围内,在此基础上,实现了BaTiO3纤维状的复合。动态力学性能的检测结果表明,相较纯IPNs,复合材料的阻尼损耗模量和阻尼损耗因子值均有所提高,且在低温区均出现了肩峰。复合物的最大损耗因子值均大于0.4,在约50℃范围内,E’值提高100MPa。力学性能检测结果表明,IPNs中的连续相是决定材料力学性能的主要因素;有机/无机组分间混溶性的降低,使BaTiO3/IPNs复合材料的抗张强度和断裂伸长率均下降。  相似文献   

13.
A multidisciplinary approach focused on models and processes to predict the performance and life expectancy of high-temperature polymer matrix composite (HTPMC) materials used in a variety of aerospace applications is being developed. Emphasis is on the implementation and extension of hierarchical models to represent the polymer behavior/properties as a function of the degradation state. Neat resin specimens of high-temperature polyimide PMR-15 have been evaluated for various aging conditions. Characterization of the properties of the polyimide is focused on development of a constitutive law for use in a micromechanical analysis to predict the behavior of PMR-15 reinforced composites. Thermo-oxidative aging is simulated with a diffusion-reaction model in which temperature, oxygen concentration and weight loss effects are considered. One-dimensional simulations illustrate oxidative layer growth for neat resin specimens. Comparisons and correlations with experimental observations of oxidation layer growth are presented.  相似文献   

14.
The clinical performance of a dental restoration is strongly influenced by the complex and dynamically-changing oral environment; however, no standard procedure exists to evaluate this lifetime. This research provides an in-depth analysis of the effect of different aging procedures on the flexural strength (FS), diametral tensile strength (DTS) and hardness (HV) of selected dental materials (Resin F, Flow-Art and Arkon). Material structure was evaluated by scanning electron microscopy. It was found that each aging protocol had some influence on the tested properties, with continual erosion and degradation being observed. Greater mechanical degradation was observed for Resin F (neat resin) after the applied aging protocols, suggesting that a resin matrix is more susceptible for degradation. The most aggressive aging protocol was Protocol 5: 0.1 M NaOH, seven days, 60 °C. Further studies on the effect of artificial aging on dental materials should include a study of the thermal and chemical factors. A standardized aging procedure is crucial for improving the resistance of dental resin composite to oral conditions and their clinical performance.  相似文献   

15.
PA6 composites with various contents of wood fibers were prepared. The effects of fiber content and ionic liquid surface treatment on the tribological behavior of PA6 composite were studied under different nominal pressures ranging from 50 to 300 N. The tribological mechanisms were discussed based on scanning electron microscopy inspections of the worn surfaces. The surface treatment of wood fibers improves the tribological performance of the neat polymer matrix. The modification can improve O/C and N/C on the surface of wood fiber, while the increase of nitrogen and oxygen content on wood fiber surface can improve the surface polarity of wood fiber and improve the infiltration and bonding between wood fiber and PA6 resin.  相似文献   

16.
This article presents the thermal degradation behavior of hybridized kenaf (bast)/pineapple leaf fiber (PALF) reinforced high density polyethylene (HDPE) composites by thermogravimetric and derivative thermogravimetric analyses (TG/DTG) with respect to the proportions of fiber in the composite, variation in fiber loading and fiber length. It was observed that the thermal decomposition of all the samples had taken place within the scheduled temperature range of 35?C615?°C. For hybrid composites prepared at 40% fiber loading, the initial peak between 236.9 and 331?°C corresponds to a mass loss of between 23 and 26%, and expectedly, PALF composite and 1:1 hybrid composite have the highest mass lost at this point. Main decomposition temperature as revealed from DTG curves occurred around 467?°C for all except composite prepared with 0.75 and 2?mm fiber length. The mass loss at this temperature was between 64.4 and 73.7%. However, at 464.87?°C, around 98% of neat HDPE had already degraded. Decomposition temperature of other composites was a little higher than the temperature at which HDPE concluded decomposition. Kenaf composite on its own showed initial thermal resistance, but above 240?°C, a sharp increase in decomposition occurred with temperature. Interestingly, hybridization took care of this. Kenaf and PALF composite have shown weaker thermal stability compared to neat HDPE at lower temperatures. The introduction of more fiber into the matrix at onset caused the thermal stability of the hybridized composite to decrease. This reduction in thermal stability of the hybrid with increase in fiber loading became obvious after the dehydration process. Decomposition of hybrid composite is directly proportional to increase in fiber loading. However, at 385?°C, where neat HDPE started decomposing, the percentage degradation of the hybrid showed inverse proportionality with increase in fiber loading. As observed, the size of the lignin and hemicelluloses shoulders in DTG curves deepen with increase in fiber loading, an indication of increased presence with increase in fiber loading.  相似文献   

17.
The particles of natural zeolite in combination with boric acid were incorporated into the epoxy resin ED-20 in order to improve the thermal stability of epoxy polymer. Epoxy resin was cured using polyethylenepolyamine. Characterization of the epoxy composites was carried out by using Fourier transform infrared spectrometry, thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) under flow of air and argon. The thermal behavior of the zeolite/boric acid-based epoxy composites (total percentage 15 mass%) were compared with that of 15 mass% boric acid-based epoxy system and the neat epoxy resin. TG and DSC results revealed that the combination of 5 mass% zeolite and 10 mass% boric acid significantly increased the mid-point temperature and residue, and decreased the maximum decomposition rate of the epoxy composites at the heating.  相似文献   

18.
The polymerization of rigid rod polymer precursors in a reactive matrix precursor, which is later cured in the mold, constitutes the in situ process. A poly-azomethine (PAM) was used as the rigid rod molecule. The resin used was an epoxy. We discuss the prediction of mechanical properties using micromechanics equations for chopped fiber composites. The chemistry used to synthesize the rigid rod polymer PAM in the epoxy precursor is reviewed. Approaches to better control the cure of these epoxy systems through cure kinetics and cure rheology studies completes the thermoset in situ molecular composite process. There was a 71% increase in tensile modulus in comparison to that of the neat epoxy resin. Molecular modeling simulations and continuum mechanics are used to help understand these findings. PAM/epoxy systems were used as a matrix material in the fabrication of unidirectional glass fiber/(PAM/epoxy) structural composites. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
2 '-methacryloxy-3α, 7α 12α- trimethacryloyl cholic acid ethyl ester (CAGE4MA) has been prepared from cholic acid. Photo-polymeric resins were prepared from CAGE4MA. 2,2-bis[4-(2-hydroxy-3-methacrylyloxypropoxy)phenyl]propane (bis-GMA) was used for comparison, triethyleneglycol dimethacrylate (TEGDMA) was used as diluent. The polymerization was initiated by camphoroquinone (CQ)/N, N-dimethylaminoethyl methacrylate (DMAEMA) system. The conversion of CAGE4MA was 39% when the reaction time is 60s, which is lower than bis-GMA and TEGDMA.The swelling value of CAGE4MA resin was 0.41% in distilled water, which is much lower than those of bis-GMA resin (2.04%) and TEGDMA resin (4.77%) under the same conditions. Copolymers from CAGE4MA and TEGDMA have been prepared. With the increase of TEGDMA in mixture, the degree of conversion of CA GE4MA and swelling value increased. The swelling values of photocured resins in 0. 1mol/L HCl were also measured.  相似文献   

20.
Three novel liquid crystalline methacrylates have been synthesized and characterized to be tested as comonomers in light‐curing dental resin‐based composites. The selected formulations consist of an alkylammonium or cholesteryl urethane methacrylate and 2,2‐bis[4‐(2‐hydroxy‐3‐methacryloyloxypropyl)phenyl]propane (BisGMA) or a BisGMA derivate modified with urethane methacrylate groups, further diluted with triethyleneglycol dimethacrylate (TEGDMA) and reinforced with 70% filler (zirconium silicate nanopowder, silanized filler). This study addresses the relationships between the LC monomer structure, photopolymerization rates (by differential scanning photo calorimetry), and specific properties of the dental resin composites (volumetric shrinkage, water sorption, water solubility, and hydrophobicity). The investigation of LC properties by differential scanning calorimetry and polarizing microscopy indicated that the LC mesophase is stable to room temperature (cationic monomers) or at 40 °C (cholesteryl methacrylate). It was found that the polymerization rate for LC urethane methacrylates used in combination with BisGMA/TEGDMA (0.122–0.136 s?1) is higher than that of the mesogenic monomers alone (0.085–0.107 s?1). The structures of the urethane monomers and, consequently, the viscosity of the comonomer mixture influence both the rate and the degree of conversion (44.8–67.5 %) of the photopolymerization process. Polymerization shrinkage measured by pycnometry showed lower values for LC monomers (3.25–3.43 vol %) comparatively with the monomer mixture (5.19–6.65 vol %). Preliminarily, the effect of ammonium groups from two resin composites incorporating alkylammonium structures (4.5 wt %) was tested on Streptococcus mutans, and distinct zone of inhibition was observed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号