首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this contribution, typical friction driven structures are summarized and presented considering the mechanical structures and operation principles of different types of piezoelectric motors. A two degree-of-freedom dynamic model with one unilateral frictional contact is built for one of the friction driven structures. Different contact regimes and the transitions between them are identified and analyzed. Numerical simulations are conducted to find out different operation modes of the system concerning the sequence of contact regimes in one steady state period. The influences of parameters on the operation modes and corresponding steady state characteristics are also explored. Some advice are then given in terms of the design of friction driven structures and piezoelectric motors.  相似文献   

2.
Bi-modulus materials with different mechanical responses in tension and compression are often found in civil, composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equa-tion of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three para-metric variables introduced in the principal stress directions. The original problem is transformed into a standard linear complementarity problem (LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke’s algo-rithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent conver-gence behavior compared with traditional iterative schemes. Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.  相似文献   

3.
4.
Summary Chaotic motions in deterministic nonlinear systems are an important topic both from a theoretical and a practical point of view. In particular, there have been many studies of systems which yield bounded nonperiodic trajectories converging to attractors of a rather complicated nature, so-called strange attractors. Their existence was demonstrated in a class of nonlinear oscillators with periodic forcing which occur in electric circuit theory and mechanics. The determination of the domain of attraction of such attractors, depending on the parameters, is an interesting problem. It is shown, that the cell mapping approach, i.e., a discrete version of a Poincaré map, represents a very efficient method for analyzing this problem.
Analyse chaotischer Systeme mit der Zellabbildungsmethode
Übersicht Chaotische Bewegungen in deterministischen nichtlinearen Systemen sind sowohl unter theoretischen als auch praktischen Gesichtspunkten von Bedeutung. Viele Untersuchungen haben sich im besonderen mit Systemen beschäftigt, deren Bewegung durch nichtperiodische Trajektorien gekennzeichnet ist, die zu komplizierten Attraktoren, sogenannten seltsamen Attraktoren, konvergieren. Die Existenz dieser Attraktoren wurde an einer Reihe von nichtlinearen, periodisch erregten Oszillatoren demonstriert, welche in elektrischen Schwingkreisen und der Mechanik auftreten. Die Bestimmung des Einzugsgebietes solcher Attraktoren in Abhängigkeit von den Systemparametern ist ein interessantes Problem. Es wird gezeigt, daß die Zellabbildungsmethode, eine diskrete Version einer Poincaré-Abbildung, ein sehr effizientes Verfahren zur Analyse dieses Problems darstellt.


Paper was presented at the XVIth International Congress on Theoretical and Applied Mechanics, August 19–25, 1984, Lyngby, Denmark  相似文献   

5.
Bionic electro-osmosis, a new method of reducing soil adhesion to soil-engaging components or parts of terrain machines, is presented. It is based on the anti-adhesion mechanism of the body surfaces of soil burrowing animals. The key feature of bionic electro-osmosis is to arrange a series of electric pole plates to create a non-smooth working surface. The static and dynamic effects of bionic electro-osmosis on the reduction of soil adhesion have been examined. The pole plates of the non-smooth surfaces with different dimensions used for bionic electro-osmosis have been designed and tested based on an experimental optimization method. The result showed that the adhesion of soil to a shovel was substantially reduced at a low electro-osmosis voltage. This technique shows promise for practical applications in reducing adhesion of soil against machine parts.  相似文献   

6.
This paper concerns the non-smooth dynamics of planar mechanical systems with isolated contact in the presence of Coulomb friction. Following Stronge [Impact Mechanics, Cambridge University Press, Cambridge, 2000], a set of closed-form analytic formulae is derived for a rigid-body impact law based on an energetic coefficient of restitution and a resolution of the impact phase into distinct segments of relative slip and stick. Thus, the impact behavior is consistent both with the assumption of Coulomb friction and with the dissipative nature of impacts. The analysis highlights the presence of boundaries between open regions of initial conditions and parameter values corresponding to distinct forms of the impact law and investigates the smoothness properties of the impact law across these boundaries. It is shown how discontinuities in the impact law are associated with discontinuity-induced bifurcations of periodic trajectories, including non-smooth folds and persistence scenarios. Numerical analysis of an example mechanical model is used to illustrate and validate the conclusions.  相似文献   

7.
This paper presents a method for the analytical prediction of sliding motions along discontinuous boundaries in non-smooth dynamical systems. The methodology is demonstrated through investigation of a periodically forced linear oscillator with dry friction. The switching conditions for sliding motions in non-smooth dynamical systems are given. The generic mappings for the friction-induced oscillator are introduced. From the generic mappings, the corresponding criteria for the sliding motions are presented through the force product conditions. The analytical prediction of the onset and vanishing of the sliding motions is illustrated. Finally, numerical simulations of sliding motions are carried out to verify the analytical prediction. This analytical prediction provides an accurate prediction of sliding motions in non-smooth dynamical systems. The switching conditions developed in this paper are expressed by the total force of the oscillator, and the nonlinearity and linearity of the spring and viscous damping forces in the oscillator cannot change such switching conditions. Therefore, the achieved force criteria can be applied to the other dynamical systems with nonlinear friction forces processing a C 0-discontinuity.  相似文献   

8.
This paper details an approach to modelling gas–solid fluidized beds using the two‐fluid granular temperature model. Details concerning the difficulties associated with the boundary conditions, particularly for curved boundaries, are described along with a novel means of obtaining the internal stress of the solid‐phase, in part, by solving an implicit equation. This results in a scheme that is stable even when the solid volume fraction is close to maximum packing. A transient, mixed finite element discretization is used to solve the multi‐phase equations with a discontinuous finite element representation of the granular temperature and continuity equations. A new solution method is proposed to solve the coupled momentum and continuity equations based on Arnoldi iteration. Two fluidized beds are modelled, one in the bubbling regime and the other in the slugging regime. These simulations are compared with experiments. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Efficient and profitable oil production is subject to make reliable predictions about reservoir performance. However, restricted knowledge about reservoir rock and fluid properties and its geometrical structure calls for history matching in which the reservoir model is calibrated to emulate the field observed history. Such an inverse problem yields multiple history‐matched models, which might result in different predictions of reservoir performance. Uncertainty quantification narrows down the model uncertainties and boosts the model reliability for the forecasts of future reservoir behaviour. Conventional approaches of uncertainty quantification ignore large‐scale uncertainties related to reservoir structure, while structural uncertainties can influence the reservoir forecasts more significantly compared with petrophysical uncertainty. Quantification of structural uncertainty has been usually considered impracticable because of the need for global regridding at each step of history matching process. To resolve this obstacle, we develop an efficient methodology based on Cartesian cut cell method that decouples the model from its representation onto the grid and allows uncertain structures to be varied as a part of history matching process. Reduced numerical accuracy due to cell degeneracies in the vicinity of geological structures is adequately compensated with an enhanced scheme of a class of locally conservative flux continuous methods (extended enriched multipoint flux approximation method or extended EMPFA). The robustness and consistency of the proposed hybrid Cartesian cut cell/extended EMPFA approach are demonstrated in terms of true representation of geological structures influence on flow behaviour. Significant improvements in the quality of reservoir recovery forecasts and reservoir volume estimation are presented for synthetic model of uncertain structures. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In this article, a novel approach for flux treatment is presented in conjunction with cell-centred Finite-Volume Lattice Boltzmann Method (FVLBM). The distribution functions are determined by using a pressure-based flux weighting factor on a D2Q9 lattice. A consistent open and solid boundary treatment is also addressed, which resulted in a wider domain of stability and faster convergence. For time discretisation, a fifth-order Runge–Kutta algorithm was applied. An in-house FORTRAN code has been written by the authors which uses the time-marching along with FVLBM. Two test cases, namely, flow over a backward-facing step and around a circular cylinder are carried out. The results are compared with the available solutions in which favourable agreement was observed.  相似文献   

11.
The influence of oxygen on elastomers, known as oxidation, is one of the most important ageing processes and becomes more and more important for nowadays applications. The interaction with thermal effects as well as antioxidants makes oxidation of polymers a complex process. Based on the polymer chosen and environmental conditions, the ageing processes may behave completely different. In a lot of cases the influence of oxygen is limited to the surface layer of the samples, commonly referred to as diffusion-limited oxidation. For the lifetime prediction of elastomer components, it is essential to have detailed knowledge about the absorption and diffusion behaviour of oxygen molecules during thermo-oxidative ageing and how they react with the elastomer. Experimental investigations on industrially used elastomeric materials are executed in order to develop and fit models, which shall be capable of predicting the permeation and consumption of oxygen as well as changes in the mechanical properties. The latter are of prime importance for technical applications of rubber components. Oxidation does not occur homogeneously over the entire elastomeric component. Hence, material models which include ageing effects have to be amplified in order to consider heterogeneous ageing, which highly depends on the ageing temperature. The influence of elevated temperatures upon accelerated ageing has to be critically analysed, and influences on the permeation and diffusion coefficient have to be taken into account. This work presents phenomenological models which describe the oxygen uptake and the diffusion into elastomers based on an improved understanding of ongoing chemical processes and diffusion limiting modifications. On the one side, oxygen uptake is modelled by means of Henry’s law in which solubility is a function of the temperature as well as the ageing progress. The latter is an irreversible process and described by an inner differential evolution equation. On the other side, further diffusion of oxygen into the material is described by a model based on Fick’s law, which is modified by a reaction term. The evolved diffusion-reaction equation depends on the ageing temperature as well as on the progress of ageing and is able to describe diffusion-limited oxidation.  相似文献   

12.
In this work the fluid–structure interactions are considered by investigating a straight but slender pipe interacting with uniform water flow. Two configurations are studied, namely vertically and horizontally positioned pipes, which are modelled as an Euler–Bernoulli beam with flexural stiffness. Both pretension and length-wise mass distribution are considered. The structure is assumed to be moving only in the direction normal to flow (cross-flow motion) hence its in-line motion is neglected. The external fluid force acting on the structure is the result of the action of sectional vortex-induced drag and lift forces. Only mean drag force is considered, with time varying lift force modelled using a non-linear oscillator equation of the Van der Pol type. The obtained coupled system of non-linear partial differential equations is simplified employing Galerkin-type discretisation. The resulting ordinary differential equations are solved numerically providing multi-mode approximations of cross-flow displacement and non-dimensional lift coefficient. The comparison between the responses of vertical and horizontal structures shows that, as expected, due to a balancing between pretension and weight, in general a higher amplitude of vibration is observed for the vertical configuration than in the same location along the pipe for the horizontal configuration in the lower part of the structure. However, lower amplitudes are obtained in the upper part of the pipe. The horizontal configuration solutions are identical in symmetrical locations along the pipe due to constant pretension. The influence of the wake equation coefficients and the fluid force coefficients on the response amplitudes has been also considered together with the length of the pipe and pretension level, and the appropriate response curves are included. Finally, for the higher mode approximations it has been shown that the vibrations level at lower frequencies is predicted reasonably well by retaining only a small subset of modes.  相似文献   

13.
14.
The vibration modelling of waveguide structures is considered. These structures comprise waveguides connected via joints. Traditionally, analytical models of the wave behaviour of such structures can be developed if they are simple (beams or rods connected at point joints, etc.). However, if the waveguides are of complicated constructions (truss-like, layered media, etc.) or the joints are complicated (e.g. of significant physical dimensions), obtaining the wave characteristics might be a formidable task. In this paper, such structures are modelled using a hybrid finite element/wave and finite element (FE/WFE) approach. The waveguides are modelled using the WFE method and thus their wave characteristics are obtained regardless of the complexity of their cross-section. The joints are modelled using standard FE, and the WFE and FE models are coupled to yield the scattering properties of the joints. The propagation and scattering models are assembled to describe the behaviour of the structure using relatively small models, while also providing information for other applications such as structure-borne sound, statistical energy analysis, etc. Numerical examples are presented to illustrate the approach.  相似文献   

15.
16.
Continuum Mechanics and Thermodynamics - This paper introduces a numerical study of latent heat storage systems, based on phase-change materials (PCMs) with various heat transfer enhancement...  相似文献   

17.
Simulation of cavitating flow has been a thrust area of research for long period due to its practical and economic importance. The major hurdle in developing a numerical model for such flows is the difficulty in representing the quick phase changes, in general, and the alternate change of flow from single phase to two phase and back, in particular. In this case, instability due to sharp variation of flow characteristics also restricts the development of numerical models. The present study demonstrates the use of a relatively simple formulation for the analysis of flow characteristics in a quasi‐rigid pipeline under abrupt phase changes due to cavitation. A popular scheme—MacCormack scheme—was used for developing a numerical solution for this problem. It uses the conservative form of the governing equations, viz. conservation of mass and momentum, the transport equation and the constitutive relationship. The model can handle variable properties of the water–vapour mixture, which is highly compressible. A newly introduced pressure under‐relaxation method overcomes the numerical instability due to sharp variation of flow characteristics during phase change. The model could predict the instant of occurrence of vapour pressure, duration of persistence of vapour pressure and the rise of pressure due to vapour collapse to satisfactory levels with published data and experimental results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Using Lie group theory, it is proposed to give the intrinsic most general equations of any curvilinear system (Σ), the only hypothesis being that each section is rigid. After giving these equations, we shall illustrate the power of the method by proposing some elements of the automatic generation of the corresponding scalar equations.  相似文献   

20.
Modern lubricants often exhibit shear-thinning due to the presence of high molecular weight polymers as additives. Therefore the influence of such non-Newtonian effects on the performances of lubricating systems must be predicted. The corresponding fluid film flow is governed by a non-linear partial differential equation, which generalizes the classical Reynolds equation. Having prescribed adequate boundary conditions, this equation is solved by a finite element method with optimal control. The problem of the square slider bearing lubricated by the Rabinowitsch fluid is solved in order to test the accuracy of the numerical scheme. The pressure and velocity fields are given and compared with the corresponding ones obtained for the Newtonian fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号