首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface properties of lignocellulosic fibers bearing carboxylic groups   总被引:7,自引:1,他引:7  
Fibers with various amounts of carboxylic acid functionalities as determined with FTIR and conductometric titration were prepared by chemical modification of high bleached kraft pulp (CP) and chemical thermomechanical pulp (CTMP) with succinic anhydride. The degree of the modification was dependent on reaction time and the type of fiber used. The modification levelled off after 15h of reaction, and this effect was similar for both fiber substrates. The amount of carboxylic acid attached to CTMP, determined by weight gain, was however less than half of the amount of carboxylic moieties introduced to CP fibers at any reaction time. ESCA characterization of the succinylated fibers indicates that the carboxylic acid functionalities are predominantly introduced at the fiber surface. The wettability in water, measured as contact angle, of the succinylated CTMP fibers was significantly improved by the modification, whereas the wettability of CP fibers was slightly decreased. The differences in wettability are caused by the dispersive and polar characteristics of succinic acid attached to the fiber surface and its interaction with the fiber surface. The character of the linkage group in the anhydride used for modification as well as the composition of the cellulose fiber surface are suggested to play a crucial role in the surface energy of the modified fibers and hence their wetting properties.  相似文献   

2.
A method for detecting carbonate in marine solid samples (sediments, corals) by Fourier transform infrared spectroscopy (FTIR) coupled to the total attenuated reflectance (ATR) technique is described. Compared to other techniques, the proposed method is not based on the measurement of CO2 evolved by combustion or acidification of the sample, but on the direct measurement of carbonate present in the sample. For this reason, the method by FTIR-ATR spectroscopy does not require any chemical pre-treatment. The proposed method allows determination of carbonate in the range 6-100% (w/w) as Na2CO3 and gives comparable results with the determination of inorganic carbon by elemental analysis.  相似文献   

3.
Understanding the ultrastructure and chemical characterization of pulp fibers is highly important in utilizing wood as a raw material in a wide scope of applications, such as forest biomass-based biorefineries and low-cost renewable materials. The observation of the ultrastructure is not possible without advanced microscopy and spectroscopy techniques. Therefore, this study focuses on exploring the ultrastructure of pulp fibers with helium ion microscopy (HIM) and scanning electron microscopy (SEM). For the analysis of chemical characterization in the pulp fibers, Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) were performed. For these studies, the pulp fiber samples were obtained mainly from three different wood species, i.e. spruce, birch and eucalyptus. They were received in the never dried state and dried with a critical point drier (CPD) to minimize pore collapse. The spectroscopy results showed a strong signal from crystalline cellulose and confirmed the absence of lignin after Kraft pulping and bleaching. However, with XPS about 2% of lignin was detected in eucalyptus pulp. The results obtained with the microscopy techniques are compared and indicating the nanofibril size, shape, surface roughness as well as their orientation in pulp fibers. To our knowledge, this is the first time that HIM is applied to study the ultrastructure of pulp fibers and compared against more conventional microscopy and spectroscopy techniques. The main differences between HIM and SEM were found to be related to the focusing and magnification. The individual nano- and microfibrils as well as their bundles were more easily visible with HIM than with SEM. Also, with HIM it was possible to get the total area in focus at once which was not the case with SEM. The increased understanding of the ultrastructure and chemical composition of wood pulp enhance the development of novel wood-based products and processes for their manufacture.  相似文献   

4.
The electric conductivity of wet pulp webs was measured at various water contents, after the water was replaced with KCl solutions of various concentrations. A specific KCl concentration in the wet pulp web equivalent to the total amount of electrolytes and dissociative groups that existed originally in the wet pulp fibers was determined from the linear relationship between the electric conductivity and the concentration of KCl added. Molar conductivity of the KCl in the wet pulp web is lower than that of the KCl solution. The amount of nonconductive water (Wnon) was estimated from the difference in molar conductivity between the wet pulp web and the KCl solution. Wnon is a kind of bound water and increases with degree of beating of the pulp.  相似文献   

5.
Successful realization of various BioMEMS devices demands effective surface modification techniques of PDMS elastomer. This paper presents a detailed report on a simple and cost effective approach for surface modification of PDMS films involving wet chemical treatment in two‐step processes: primarily involving piranha solution followed by KOH dip to improve hydrophilicity and stability of PDMS surface. Chemical composition of the solution and surface treatment condition have been varied and optimized to significantly increase the surface energy. The effect of surface modification of the elastomer after wet chemical treatment is analyzed using contact angle measurement and FTIR‐ATR study. PDMS surface treated in piranha solution with H2O2 and H2SO4 in the ratio of 2:3 followed by a dip in KOH solution for 15 min duration each, demonstrated a maximum reduction of contact angle to ~27° as compared to untreated sample having a contact angle of ~110°. The removal of hydrophobic methyl group from elastomer surface and subsequent hydrophilization of surface by wet chemical process was confirmed from FTIR‐ATR spectra. This result is also supported by improved adhesion and electrical continuity of deposited aluminum metal film over the modified PDMS surface. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
In the field of FTIR spectroscopy, the far infrared (FIR) spectral region has been so far less investigated than the mid-infrared (MIR), even though it presents great advantages in the characterization of those inorganic compounds, which are inactive in the MIR, such as some art pigments, corrosion products, etc. Furthermore, FIR spectroscopy is complementary to Raman spectroscopy if the fluorescence effects caused by the latter analytical technique are considered. In this paper, ATR in the FIR region is proposed as an alternative method to transmission for the analyses of pigments. This methodology was selected in order to reduce the sample amount needed for analysis, which is a must when examining cultural heritage materials. A selection of pigments have been analyzed in both ATR and transmission mode, and the resulting spectra were compared with each other. To better perform this comparison, an evaluation of the possible effect induced by the thermal treatment needed for the preparation of the polyethylene pellets on the transmission spectra of the samples has been carried out. Therefore, pigments have been analyzed in ATR mode before and after heating them at the same temperature employed for the polyethylene pellet preparation. The results showed that while the heating treatment causes only small changes in the intensity of some bands, the ATR spectra were characterized by differences in both intensity and band shifts towards lower frequencies if compared with those recorded in transmission mode. All pigments' transmission and ATR spectra are presented and discussed, and the ATR method was validated on a real case study. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Infrared reflection-absorption spectroscopy (IRRAS) intensities of the Amide I vibration are used to develop a quantitative approach for determining the Euler angles that describe the orientation of protein beta-sheets in aqueous monolayer films. A synthetic amphipathic peptide, Val-Glu-Val-Orn-Val-Glu-Val-Orn-Val-Glu-Val-Orn-Val-OH is used as a test case. The pattern of Amide I frequencies suggests that the molecule is organized as an antiparallel beta-sheet at the air/water interface. The model used to simulate the Amide I intensities reveals that the beta-sheet has a slight preferential alignment parallel to the direction of compression; i.e., deviation from uniaxial symmetry is observed. In addition, the sheet is found to lie flat on the aqueous surface, with (presumably) the polar side chains interacting with the aqueous subphase. Limitations and advantages of the theoretical approach are discussed.  相似文献   

8.
In this paper the influence of charged species on the sheet strength of viscose fibres was investigated. Four samples of chemical modified viscose fibres, as well as a reference fibre were studied. The swelling of these viscose fibres and the breaking length of hand sheets have been determined. Comparing the results, the influence of both, swelling and surface charge on the bonding force, is evident. The allocation of the charges, induced by cationic starch and Carboxmethylcellulose, has been analyzed by Titration, attenuated total reflection spectroscopy (ATR) and X-ray photoelectron spectroscopy (XPS). Titration was used to make a first estimation of the charge distribution within the fibre. Using ATR and XPS, more detailed information about the surface charge has been achieved. All measurement methods showed a significant amount of charge on the fibre surface.  相似文献   

9.
The stabilizing role of carboxymethyl groups on the conformal deposition of Ag NPs over cellulosic fibers was elucidated while developing a method for the deposition of silver nanoparticles (NPs) on cellulose acetate (CA), cellulose and partially carboxymethylated cellulose (CMC) electrospun fibers. CMC fibers were prepared through judicious anionization of deacetylated cellulose acetate fibers. Ag NPs were chemically reduced from silver nitrate using sodium borohydride and further stabilized using citrate. Ag NPs were directly deposited onto CA, cellulose and CMC electrospun fibers at pH conditions ranging from 2.5 to 9.0. The resulting composites of Ag/fiber were characterized by field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDX). The results revealed that the amount of Ag agglomerates and NPs deposited on CMC fibers was higher than that deposited on cellulose fibers at similar pH conditions, and that barely any Ag agglomerates or NPs were deposited on the CA fibers. These results implied that functional groups on the cellulose backbone played two important roles in the deposition of NPs as follows: (1) Hydrogen bonding was the main driving force for agglomeration of NPs when the medium pH was below 4.4, which corresponds to the pKa of carboxylic acid groups; (2) Carboxymethyl groups could replace citrate groups as stabilizers allowing the fabrication of a uniform and evenly distributed Ag NPs layer over CMC fibers at higher pH values. This report also highlights the importance of the substrate’s surface charge and that of the pH of the medium used, on the deposition of NPs. The composite of Ag NPs on CMC electrospun fibers appears to be a promising candidate for wound dressing applications due to its superior antibacterial properties originated by the uniform and even distribution of Ag NPs on the surface of the fibers and the wound healing aptness of the CMC fibers.  相似文献   

10.
The synthesis of cellulose peroxides of the peracid type having a temperature-responsive function was studied by using carboxymethyl cellulose (CMC) and acrylic acid (AA)-grafted cellulose, into which the temperature-responsive component, poly(N-isopropylacrylamide) [poly(NIPAAm)], was introduced by a photografting method (λ > 300 nm). Dissolving pulp from softwoods was used as cellulose sample. NIPAAm-grafted CMC samples prepared by photografting with CMC peroxide exhibited a slightly larger temperature-responsive character than the samples prepared by photografting with xanthone photoinitiator, where the grafted CMC samples swelled and shrank in water at 5 °C and 60 °C, respectively. Ungrafted and NIPAAm-grafted CMC samples were subjected to peroxidation with hydrogen peroxide in the presence of methanesulfonic acid. About 90% of the initial amount of peroxide on the ungrafted CMC sample disappeared after thermal decomposition at 50 °C for 60 min. On the other hand, about 50% of the peroxide on the NIPAAm-grafted CMC sample remained stable under the same conditions. Peroxides on AA/NIPAAm-grafted samples, which were prepared by photografting of AA/NIPAAm binary monomers followed by peroxidation with hydrogen peroxide, were more stable towards thermal decomposition than those on NIPAAm-grafted samples.  相似文献   

11.
Simple and convenient methods for determining surface chemical composition of lignocellulosic materials are described. The methods are based on vapor phase fluorine surface derivatization with either trifluoro acetic anhydride (TFAA), tri-fluoro ethanol (TFE) or pentafluorophenyl hydrazine (PFPH) and subsequent Electron Spectroscopy for Chemical Analysis (ESCA). Model cellulosic surfaces with well defined functionalities were used to optimize the derivatization reaction conditions. Detection and accessibility of surface hydroxyl functional groups were investigated in cotton and regenerated cellulose as models. Carboxymethyl cellulose (CMC) was used as a model surface for detection and quantification of carboxylic acid groups. Theoretical conversion curves for derivatization reactions were calculated and used to evaluate the extent of the reactions on the model surfaces. It was found that the conversion was higher for the regenerated cellulose and CMC than for cotton. The protocols developed using the model surfaces were applied to a case study on wood fibers with different degrees of complexity, namely dissolving and chemithermomechanical (CTMP) pulp. Untreated and oxygen-plasma modified pulps were compared with respect to the surface composition of functional groups. According to the derivatization reactions, functionalities containing oxygen were significantly increased on the plasma-treated samples. The effect of the treatment was found to be dependent on the type of pulp. Fluorine derivatization is shown to be an unambiguous method for clear assessment of the chemical functionalities of cellulosic surfaces.  相似文献   

12.
Gas phase ozonation was done on sheets made from chemical thermomechanical pulp in order to improve the wetting properties of the lignocellulosic fibers. The degree of modification was varied by letting the reaction continue for different lengths of time, ranging from 1 to 60 min. Changes in the chemistry of the fibers after ozone exposure were investigated using Fourier transform infrared (FT-IR) spectroscopy and electron spectroscopy for chemical analysis (ESCA). The evolution of a carbonyl signal and the decrease of aromatic absorption over time was observed with FT-IR spectroscopy. The carbonyl peak grew in intensity as the reaction continued throughout the whole range of treatment times. The ESCA showed that carbonyl and carboxyl functionalities were introduced after 10 min of ozone exposure and that the intensity of the peak from the aliphatic and aromatic carbons decreased. However, an ozone treatment longer than 15 min did not affect the chemical surface composition, as analyzed by ESCA. The single-fiber contact angle with water, measured using a Cahn balance, decreased with extended ozonation. Measuring the time required for the sheet to absorb a water droplet with a high speed camera showed that even a very short ozone exposure (1 min) dramatically affected the absorption behavior. The rate of absorption dramatically increased after as little as 1 min of ozone exposure. This improvement in absorption rate was most likely due to the formation of low molecular weight degradation products, acting as wetting agents, created during the ozonation.  相似文献   

13.
Milk production is a dominant factor in the metabolism of dairy cows involving a very intensive interaction with the blood circulation. As a result, the extracted milk contains valuable information on the metabolic status of the cow. On-line measurement of milk components during milking two or more times a day would promote early detection of systemic and local alterations, thus providing a great input for strategic and management decisions. The objective of this study was to investigate the potential of mid-infrared (mid-IR) spectroscopy to measure the milk composition using two different measurement modes: micro attenuated total reflection (μATR) and high throughput transmission (HTT). Partial least squares (PLS) regression was used for prediction of fat, crude protein, lactose and urea after preprocessing IR data and selecting the most informative wavenumber variables. The prediction accuracies were determined separately for raw and homogenized copies of a wide range of milk samples in order to estimate the possibility for on-line analysis of the milk. In case of fat content both measurement modes resulted in an excellent prediction for homogenized samples (R(2)>0.92) but in poor results for raw samples (R(2)<0.70). Homogenization was however not mandatory to achieve good predictions for crude protein and lactose with both μATR and HTT, and urea with μATR spectroscopy. Excellent results were obtained for prediction of crude protein, lactose and urea content (R(2)>0.99, 0.98 and 0.86 respectively) in raw and homogenized milk using μATR IR spectroscopy. These results were significantly better than those obtained by HTT IR spectroscopy. However, the prediction performance of HTT was still good for crude protein and lactose content (R(2)>0.86 and 0.78 respectively) in raw and homogenized samples. However, the detection of urea in milk with HTT spectroscopy was significantly better (R(2)=0.69 versus 0.16) after homogenization of the milk samples. Based on these observations it can be concluded that μATR approach is most suitable for rapid at line or even on-line milk composition measurement, although homogenization is crucial to achieve good prediction of the fat content.  相似文献   

14.
Studies on reactions in solutions are often hampered by solvent effects. In addition, detailed investigation on kinetics is limited to the small temperature regime where the solvent is liquid. Here, we report the in situ spectroscopic observation of UV-induced photochemical reactions of aryl azides within a crystalline matrix in vacuum. The matrices are formed by attaching the reactive moieties to ditopic linkers, which are then assembled to yield metal–organic frameworks (MOFs) and surface-mounted MOFs (SURMOFs). These porous, crystalline frameworks are then used as model systems to study azide-related chemical processes under ultrahigh vacuum (UHV) conditions, where solvent effects can be safely excluded and in a large temperature regime. Infrared reflection absorption spectroscopy (IRRAS) allowed us to monitor the photoreaction of azide in SURMOFs precisely. The in situ IRRAS data, in conjunction with XRD, MS, and XPS, reveal that illumination with UV light first leads to forming a nitrene intermediate. In the second step, an intramolecular rearrangement occurs, yielding an indoloindole derivative. These findings unveil a novel pathway for precisely studying azide-related chemical transformations. Reference experiments carried out for solvent-loaded SURMOFs reveal a huge diversity of other reaction schemes, thus highlighting the need for model systems studied under UHV conditions.  相似文献   

15.
In 2014, a new type of the fire-resistant paper based on ultralong hydroxyapatite (HAP) nanowires was reported by the author’s research group, which had superior properties and promising applications in various fields, such as high-temperature resistance, fire retardance, heat insulation, electrical insulation, energy, environmental protection, and biomedicine. The wet end chemical properties of the fire-resistant paper pulp are very important for papermaking and mechanical performance of the paper, which play a guiding role in the practical production of the fire-resistant paper. In this paper, the wet end chemical properties of a new kind of fire-resistant paper pulp based on ultralong HAP nanowires are studied for the first time by focusing on the wet end chemical parameters, the effects of these parameters on the properties such as flocculation, retention, draining, and white water circulation of the fire-resistant paper pulp, and their effects on the properties of the as-prepared fire-resistant paper. The experimental results indicated that the wet end chemical properties of the new kind of fire-resistant paper pulp based on ultralong HAP nanowires were unique and entirely different from those of the traditional paper pulp based on plant fibers. The wet end chemical properties of the fire-resistant paper pulp were significantly influenced by the inorganic adhesive and its content, which affected the runnability of the paper machine and the properties of the as-prepared fire-resistant paper. The flocculation properties of the fire-resistant paper pulp based on ultralong HAP nanowires were affected by the conductivity and Zeta potential. The addition of the inorganic adhesive in the fire-resistant paper pulp based on ultralong HAP nanowires could significantly increase the conductivity of the fire-resistant paper pulp, reduce the particle size of paper pulp floccules, and increase the tensile strength of the fire-resistant paper. In addition, the fire-resistant paper pulp based on ultralong HAP nanowires in the presence of inorganic adhesive exhibited excellent antibacterial performance. This work will contribute to and accelerate the commercialization process and applications of the new type of the fire-resistant paper based on ultralong HAP nanowires.  相似文献   

16.
Mid-infrared spectroscopy has proved to be a powerful method for the study of various samples and chemical media as found in different industrial processes. In general, the analysis of such samples takes advantage of the fact that multiple analytes can be quantified simultaneously and rapidly without the need for additional reagents. When compared to near-infrared spectroscopy, for which quartz fiber probes can be successfully applied, the application of previously used mid-infrared fiber materials was restricted due to deficiencies with regard to their optical transmission and mechanical properties. Progress in the quality of infrared transparent silver halide fibers and their extrusion with different cross-sections enabled us to construct several flexible fiber-optic probes of different geometries which are particularly suitable and inert for process monitoring. Transmission and attenuated total reflection measurement techniques have mainly been employed for the analysis of liquid and gaseous media. One larger field, for which results are reported, is chemical reactor monitoring. Other applications are concerned with bio-reactor monitoring, or quasi-continuous measurements for the food industry. Infrared spectroscopic cosmetic assays for determining the chemical composition of skin-care formulations are a further promising field of application, for which an example is given.  相似文献   

17.
Infrared reflection-absorption spectroscopy (IRRAS) has been used extensively in the study of adsorbates and thin layers on metal surfaces, but little work has been performed on non-metals due to the low sensitivity which results when these materials are used. In this work, thin film structures consisting of a thin layer of a semiconductor (silicon) on a metal (copper) surface are used to increase the sensitivity of the technique for examining layers of poly(methylmethacrylate).  相似文献   

18.
Instrumental techniques such as Fourier Transform Infrared Spectroscopy (FT-IR) constitute well-studied methodologies for polymer characterization, including polymeric fibers. However, a relatively short number of scientific publications involve the characterization of commercial Poly [(4-hydroxybenzoic)-ran-(2-hydroxy-6-naphthoic acid)] (Vectran™) fiber and its surface species. The majority of the published infrared studies uses the medium infrared region (MIR) associated to the Attenuated total reflection (ATR) method. In this scenario, this short review addresses the characteristics of Vectran™ fiber, sample depth data of each FT-IR spectrum mode, reflection and photo-acoustic spectroscopy (PAS), including near infrared (NIR) analysis. This paper addresses also researches on the characterization of Vectran™ by several FT-IR analysis conditions aiming to contribute to future studies. This brief review deals with methodologies developed in the last decade and published by several scientific research groups, emphasizing studies conducted in the last five years. A critical assessment and trends are also included.  相似文献   

19.
Polyethylene glycol methacrylate (PEGMA) with different polyethylene oxide units were grafted onto polypropylene (PP) films by a preirradiation grafting method. The effect of co-solvent system on the degree of grafting and water contact angle were determined, respectively. The grafted sample films were verified by Fourier Transform Infrared (FTIR) spectroscopy in the attenuated total reflectance mode (ATR). The biocompatibility and blood compatibility of the grafted PP films were evaluated by the determination of protein adsorption, platelet adsorption and thrombus.  相似文献   

20.
In a model platelet system the corrosion of metallic materials was studied by processing polyethylene, polyphenylene sulfide, and glass-fibre-reinforced polyphenylene sulfide. The measurement methods used were scanning electron microscopy (images), electron-probe microanalysis (lateral element maps), secondary-ion mass spectrometry (depth profiles), X-ray photoelectron spectroscopy (chemical bonding), and grazing-incidence X-ray diffraction (structures of crystalline compounds). As nondestructive measure of corrosive attack, grazing-incidence X-ray diffraction, using the intensity ratio (IFe-O/IFe), was found to be the method of choice. The reproducibility for the total procedure was found to range between 6 and 13% (rel.). The intensity ratio was examined as function of depth, of the time of stress, of material composition, and of the surrounding atmosphere. Oxides were identified as main corrosion products. The extent of oxide formation is proportional to the time elapsed after processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号