首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On films and fibers of well-reflecting metals (silver, gold) several nanometers thick, surface plasmons could be slowed down by 10 to 40 times. The plasmons are additionally slowed down when the nanofilms (nanofibers) are placed into a medium with a dielectric constant that is approximately equal to but still smaller than the modulus of the negative dielectric constant of the metal. As the result, the optical frequency waves prove to have wavelengths of ∼4 nm, i.e., as in soft x-ray. The propagation losses of these waves are moderately high. We propose to develop the optics (the optical transformations — deviation, focusing, photonic crystals, etc.) of these waves on thin metal layers integrated into nanodevices. In particular, we calculated the probability of spontaneous emission of a photon by an atom (molecule) into the surface plasmon of a nanoparticle. This probability proved to be increased by many orders of magnitude. This work interprets experiments that show a higher (14 orders of magnitude and more) probability of spontaneous Raman scattering of a molecule on the surface of a silver nanoparticle. The molecule is in the field of a surface plasmon, owing to which the local field and density of states of the field prove to be increased to such an extent as to give a rise of 12 or 13 orders of magnitude. An additional increase by one or two orders of magnitude is due to the antenna effect of a pair of nanoparticles, one of which is extremely small and the other is sufficiently large to serve as an efficient transceiver antenna. The possibility of developing sources of light pulses of exceptionally short duration arises.  相似文献   

2.
We consider methods for controlling magnetoresistive parameters of magnetic metal superlattices, manganites, and magnetic semiconductors. By reducing the thickness of ferromagnetic layers in superlattices (e.g., Fe layers in Fe/Cr superlattices), it is possible to form superparamagnetic clustered–layered nanostructures with a magnetoresistance weakly depending on the direction of the external magnetic field, which is very important for applications of such type of materials. Producing Mn vacancies and additionally annealing lanthanum manganites in the oxygen atmosphere, it is possible to increase their magnetoresistance by more than four orders of magnitude. By changing the thickness of pn junction in the structure of ferromagnetic semiconductors, their magnetoresistance can be increased by 2–3 orders of magnitude.  相似文献   

3.
At low temperature (5 K), a single biphenyl molecule adsorbed on a Si(100) surface behaves as a bistable device which can be reversibly switched by electronic excitation with the scanning tunneling microscope tip. Density functional theory suggests that the biphenyl molecule is adsorbed with one dissociated hydrogen atom bonded to a neighbor surface silicon atom. By desorbing this hydrogen atom with the STM tip, the interaction of the molecule with the surface is modified such that it becomes transformed into a multistable device with four stable states having switching yields increased by almost 2 orders of magnitude.  相似文献   

4.
The gravitational wave antenna OGRAN is installed in the underground laboratory of the Baksan Neutrino Observatory. At the present time, it has a limited sensitivity sufficient only to detect gravitational radiation from sources situated at a distance of about 100 kpc. The calculations presented in this paper demonstrate the increase in the sensitivity by two orders of magnitude with cooling of the acoustical resonator of the antenna to the liquid-nitrogen temperature. The possibility of using the same optical detection scheme as the one under room temperature is discussed. The revised construction of the cryogenic version of the OGRAN antenna is considered. The results of experiments carried out with the pilot model of cryogenic antenna are presented.  相似文献   

5.
A change in the time dependence of the second moment of the distribution of intensities of coherences with various orders in the spectrum of multiple-quantum NMR in a solid at the inclusion of an inhomogeneous magnetic field in the effective interaction is studied. Both the secular dipole–dipole and nonspecular twoquantum interactions are considered as nucleus–nucleus interactions, which correspond to traditional experimental realizations. It is shown that, with an increase in the magnitude of the inhomogeneous field, an exponential increase in the second moment of multiple-quantum NMR with time changes to a power-law increase. The results obtained in this work indicate that this second moment, which determines the average number of dynamically correlated spins, can be used as a convenient characteristic for studying a transition to a many-body localized state.  相似文献   

6.
The vibrational signatures of methylene blue (MB) dye molecule have been reported. Complete vibrational assignments of the molecule are presented for the first time. Concentration‐dependent surface enhanced resonance Raman scattering [SER(R) S] spectra of the molecule have been investigated. Fluorescence spectroscopic technique has been applied to explore the concentration of the probe molecule actually adsorbed on the gold nanocolloidal (AuNC) surface. The free energy of adsorption and saturated concentration of MB molecules on AuNC surface are also estimated. Gigantic enhancements ~105–1013 orders of magnitude have been recorded for the enhanced Raman bands in the SER(R) S spectra. The possible orientation of the molecule on the AuNC surface and their probable protrusions within the hot spots have been suggested. The hot geometries and correlation between the plasmonic behavior of the nanoparticles and enhancement efficiencies of the SER(R) S band have been mapped with the aid of three‐dimensional finite difference time domain (3D‐FDTD) simulations. Application of soft lithographic technique to engineer the pattern formation of hetero dimeric spherical aggregates will be an interesting field of study in future to enhance the detection limit of this and similar types of dye molecules. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Field emission from nanostructured carbon materials is analyzed by applying the model of emission center in which the emitting surface contains two phases of carbon having substantially different electronic properties. In accordance with this model, the proposed mechanism involves electron tunneling through two potential barriers. The calculated probability of tunneling through two potential barriers implies that the low-voltage field emission observed experimentally can be attributed to the existence of resonant surface states. Numerical estimates suggest that the emission current can increase by at least four orders of magnitude owing to resonant tunneling through two potential barriers.  相似文献   

8.
A theory of the spontaneous decay process of an excited atom placed inside or outside (near the surface) of a carbon nanotube has been developed. Numerical calculations of the atomic spontaneous decay enhancement factor have been performed for various achiral nanotubes. The effect of the nanotube surface has been demonstrated to dramatically increase the spontaneous decay rate—by 6–7 orders of magnitude—compared with that of the same atom in a vacuum. Such an increase is associated with nonradiative decay via surface excitations in the nanotube. Possible applications of the predicted effect are discussed.  相似文献   

9.
Oh Y  Lee W  Kim D 《Optics letters》2011,36(8):1353-1355
We have investigated enhanced surface plasmon resonance detection through colocalization of gold nanoparticle (GNP)-conjugated target molecules and near-fields established by nanograting-based antennas. The target colocalization was implemented by angled dielectric thin-film deposition on the nanograting structure. The concept was tested by detecting DNA hybridization and shows that the colocalization produces an additional 60%-80% increase of resonance shifts. The colocalization involves a much smaller number of target molecules, so that the measured enhancement per molecule by the colocalization of GNP-conjugated DNA oligomers was estimated to be by more than 2 orders of magnitude relative to that of thin-film-based conventional detection.  相似文献   

10.
On soft magnetic amorphous specimens, a rapid decrease in the surface amplitude of 180° domain wall oscillations relative to the bulk amplitude is observed with increasing frequency of the magnetizing field. The dynamics of the domain wall is studied by a magnetooptical method at the specimen surface and by the induction method in the bulk. The results of the experiment disagree with the theory, which takes into account the effect of eddy currents and predicts that, with increasing frequency, the surface amplitude of the domain wall oscillations should decrease slower than the bulk amplitude. The observed behavior of the domain wall is explained by its interaction with macroscopic defects at the specimen surface. This interaction gives rise to unsteady chaotic surface wall displacements, which lead to an increase by several orders of magnitude in the effective surface damping parameter in the Landau-Lifshits equation.  相似文献   

11.
Yong Zhang 《中国物理 B》2022,31(7):77702-077702
An acoustically actuated piezoelectric antenna is proposed for low frequency (LF) band in this paper. The proposed antenna is theoretically calculated, numerically optimized by the finite element method (FEM), and experimentally analyzed. The measurement results show that the near-field radiation pattern of the piezoelectric antenna is similar to that of the electric dipole antenna. The radiation efficiency of the piezoelectric antenna is 3-4 orders of magnitude higher than that of electrically small antenna (ESA), with their sizes being the same size, and the maximum transmission distance obtained experimentally is 100 cm, which can be improved by increasing the input power. In addition, the gain, directivity, and quality factor of piezoelectric antenna are also analyzed. In this paper, traditional antenna parameters are creatively used to analyze the performance of piezoelectric antenna. The research conclusions can provide reliable theoretical basis for realizing LF antenna miniaturization.  相似文献   

12.
The ion current of adsorbed water molecules is studied experimentally as a function of the frequency of near-IR radiation incident on a surface at frequencies in the intrinsic vibrational bands of the water molecule. The ions are produced by nonequilibrium field surface ionization. The observed band (near one of the combination frequencies) has a width of 100 cm−1 and is shifted relative to the free molecular band by 130 cm−1. Estimates show that the cross section for absorption of the radiation by the adsorbed molecules is 3–4 orders of magnitude larger than for free molecules, as is typical of surface processes. Zh. Tekh. Fiz. 69, 123–127 (September 1999)  相似文献   

13.
Using an electromembrane source, mass-spectrometric investigations into the field evaporation of ions from KI solutions in a water-glycerol mixture and in ethylene glycol are performed. The concentration of negatively charged solvent ions (deprotonated molecules) on the emitting surface of the liquid is determined. It is shown that, under the conditions of intense field evaporation of ions, the surface concentration of deprotonated glycerol and ethylene glycol molecules is several orders of magnitude higher than their equilibrium concentration in the absence of an electric field. The high concentration of solvent ions is associated with an increase in the autoprotolysis constant in a strong electric field.  相似文献   

14.
The optoacoustic gravitational-wave antenna (OGRAN) located in the underground laboratory of the Baksan Neutrino Observatory has a limited sensitivity sufficient only to detect gravitational radiation from astronomical objects at a distance of 100 kpc. In order to cover sources in the zone with a radius of up to 15 Mpc, it is proposed to economically upgrade the antenna and cool down the body of the acoustic detector to a temperature of liquid nitrogen of ~78 K [1]. In this case, the spectral density of the Brownian noise of the detector decreases owing to temperature and also owing to the subsequent increase in its acoustic Q factor by one and a half to two orders of magnitude. This paper presents the results of an experiment for testing these ideas on the cryo-OGRAN prototype while preserving the optical detection scheme used for the uncooled antenna.  相似文献   

15.
Based on a modification of the discrete sources method, a detailed analysis of plasmon resonances of closely located particles is performed. The numerical algorithm makes it possible to calculate the near field with a high degree of accuracy and to trace resonances at which both the cross section and the intensity of the near field increase by several orders of magnitude.  相似文献   

16.
谢安东  周玲玲  阮文  伍冬兰  罗文浪 《物理学报》2012,61(4):43302-043302
在相对论有效原子实势近似下, 以Pu为SDD基组、O为6-311+G*基组, 采用优选的密度泛函 B3LYP方法, 研究了用电场摸拟钚本身产生自辐射场(-0.005—0.005 a.u.) 作用下氧化钚(PuO)基态分子的最高占据轨道(HOMO)能级EH、最低空轨道(LUMO)能级EL、能隙Eg和费米能级EF. 结果表明: 在所加的电场范围内, EH随着电场的增加均逐渐减少, EF随着电场的增加均逐渐增大, Eg始终处于增大的趋势, 费米能级EF上升, 占据轨道的电子难以被激发至空轨道而形成激发态, PuO分子在自辐射场中更趋于稳定, 可以阻止O2, H2等扩散到表面内层而腐蚀钚表面, 有利于了钚在自辐射场中抗腐蚀.  相似文献   

17.
Gold nanorods with aspect ratios of from 1 (particles) to 31.6 were synthesized by the seed-mediated method and packed in a highly ordered structure on a large scale on silicon substrates through capillary force induced self-assembly behaviour during solvent evaporation.The gold nanorod surface exhibits a strong enhancing effect on Raman scattering spectroscopy.The enhancement of Raman scattering for two model molecules (2-naphthalenethiol and rhodamine 6G) is about 5-6 orders of magnitude.By changing the aspect ratio of the Au nanorods,we found that the enhancement factors decreased with the increase of aspect ratios.The observed Raman scattering enhancement is strong and should be ascribed to the surface plasmon coupling between closely packed nanorods,which may result in huge local electromagnetic field enhancements in those confined junctions.  相似文献   

18.
Deflection of a cold supersonic NO beam seeded in He has been observed when these molecules interact with both static and a resonant oscillating electric field. The NO beam splits into two beams each one deflecting about 0.5° towards the positive and negative direction of the Stark field when the employed resonant frequency between the two Stark levels of the NO molecule is 1515 kHz. This deflection angle is about four orders of magnitude higher than the value one would expect from the NO dipole moment and the employed RF field gradient. This phenomenon suggests the possibility of a significant translational motion perpendicular to the beam axis, which is induced by the resonant RF electric field on the cold and high-density supersonic beam.  相似文献   

19.
The effects of elastic and inelastic electron–phonon interactions on current–voltage characteristic and tunnelling magnetoresistance (TMR) of Li@C59X (X = N, B) molecule that is coupled to two ferromagnetic electrodes was investigated using the non-equilibrium Green's function (NEGF) method. Our results by taking also into consideration spin degrees of freedom (excluding spin-mixing effects) indicate that the presence of inelastic electron–phonon interaction polaron formation increases current and shifts the TMR behaviour to higher values. Also, an increase of two orders of magnitude observed in current for Li@C59B compared to C60.  相似文献   

20.
Highly sensitive surface‐enhanced Raman scattering active substrate obtained by self‐assembly of silver nanocolloids (AgNCs) in the bilayer Langmuir–Blodgett (LB) film of stearic acid (SA) has been reported. Rhodamine 6G (R6G) has been used as the probe molecule to test the efficacy of the as prepared substrate. Gigantic enhancement factors ~1012 orders of magnitude have been estimated from the surface‐enhanced resonance Raman scattering [SER(R) S] spectrum of R6G, which proves that the as prepared substrate is superior or comparable with silver nanoparticle as dried AgNC solutions on microscopic slides. The optical properties of the as prepared substrates have been envisaged by ultraviolet‐visible absorption spectra, while their morphological features are mapped through field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) images. A correlation has been drawn between the SER(R) S efficacy and the corresponding FESEM and AFM images of the as prepared substrates. Electric field distributions around the aggregated AgNCs have been estimated with the aid of three‐dimensional finite difference time domain simulation studies. Localized surface plasmon coupling between the nanoaggregated geometries may be altered by lifting the LB film of SA at various surface pressures. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号