首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
 通过沉淀、回流和浸渍法制备了镓掺杂的纳米级固体超强酸SO2-4/Ga2O3/ZrO2,并用X射线衍射、透射电镜、热重、吡啶吸附红外光谱、低温N2-BET及化学分析等技术对SO2-4/Ga2O3/ZrO2的结构、表面性质及其对正丁烷异构化反应的催化活性进行了研究.结果表明,掺杂Ga2O3可以抑制制备过程中ZrO2晶粒长大,有利于抑制高温下催化剂由四方相转变为单斜相.与未掺杂的催化剂相比,Ga2O3的掺杂提高了催化剂表面SO2-4的分解温度,有利于催化剂表面形成更多的酸中心.SO2-4/Ga2O3/ZrO2对正丁烷异构化反应显示出优异的催化性能.其中,含3%Ga2O3的样品的活性最高,220℃下其初活性为59.1%;反应1h后,其活性基本保持稳定,稳态转化率大于51%,接近该反应条件下正丁烷的平衡转化率.  相似文献   

2.
3.
通过水热法改性氢氧化锆制备了Pt-SO4^2-/ZrO2固体酸催化剂,并用低温氮吸附、X射线衍射、扫描电镜和差热分析等技术考察了氢氧化锆水热处理时的温度对Pt-SO4^2-/ZrO2固体酸物化性能及催化性能的影响,对水热改性的作用机理进行了讨论。在连续微反-色谱装置上评价了催化剂对正戊烷异构化反应的催化活性。用水热法对氢氧化锆粒子进行处理,可以使其形成较稳固的孔结构。这种孔结构具有较高的热稳定性,可有效阻止焙烧过程中氧化锆粒子的烧经长大。与室温老化制备的催化剂相比,由在90-110℃下水热改性氢氧化锆所制备的催化剂的比表面积、硫含量和孔体积均有显著的提高,但催化剂的TOF下降;水热温度高于130℃时,催化剂的TOF升高。实验结果表明,由水热法得到的晶态水合氧化锆也可以制备SO4^2-/ZrO2类固体酸。  相似文献   

4.
SO2-4/ZrO2-Al2O3及载Pt催化剂上正丁烷异构化反应   总被引:18,自引:0,他引:18  
研究了SO4^2-/ZrO2-Al2O3固体超强酸催化剂与制备条件的关系,探讨了催化剂表面结构及晶化程度,并在N2活化条件下用脉冲色谱法考察了催化剂催化正丁烷异构化反庆活性。结果表明,添加A1可提高催化剂的催化剂的催化活性,降低反应温度,载铂对提高催化剂的活性和稳定性更为有效。  相似文献   

5.
Al2O3/WO3/ZrO2固体强酸催化剂对正丁烷异构化的催化性能   总被引:9,自引:2,他引:9  
 通过沉淀、回流、浸渍和焙烧等步骤制备了Al2O3/WO3/ZrO2固体强酸催化剂.采用XRD,N2吸附,UV-Vis光谱,NH3-TPD和H2-TPR等技术测定了Al2O3对WO3/ZrO2催化剂的结构、表面酸性、氧化还原性及正丁烷异构化反应性能的影响.结果表明,在WO3/ZrO2中引入适量的Al2O3对其表面酸强度及酸量无显著影响,但可使催化剂中的ZrO2组分以稳定的四方相形式存在,并能有效地抑制催化剂中WO3的聚集长大,从而提高催化剂的稳定性和正丁烷异构化的转化率和选择性.添加铂于Al2O3/WO3/ZrO2中可进一步提高其催化性能.还考察了催化剂的焙烧温度、Al含量、反应温度和反应气氛对正丁烷异构化反应的影响.  相似文献   

6.
用常温正丁烷异构化反应表征固体超强酸性   总被引:8,自引:0,他引:8  
研究了室温下固体超强酸催化剂上正丁烷反应,发现转化率低于50%时,异构化选择性高于95%,正丁烷异构化反应动力学符合一级可逆反应规律,固体超强酸的酸强度与正丁烷异构化反应转化率和速率常数呈顺变关系,与反应表现活化能呈逆变关系.报出了一种新的表征固体超强酸性的实验方法.  相似文献   

7.
自从 Arata等 [1]首次报道无卤素型 SO2 - 4/Mx Oy 固体超强酸体系以来 ,对该类催化剂的研究引起了人们的广泛重视 .大量研究工作表明 ,固体超强酸催化剂对丁烷异构化、苯衍生物烷基化、链烷烃裂解和乙烯二聚等诸多酸催化的反应表现出极高的反应活性 [2 ] .最近 ,我们把 SO2 - 4/Ti O2 型固体超强酸应用于有机物的光催化氧化反应 ,研究发现 Ti O2 光催化剂经 H2 SO4 浸渍处理形成固体超强酸后 ,催化剂的光催化活性大大提高 ,并具有很好的反应活性、稳定性和抗湿性能 [3] ;此外 ,我们以前的工作表明 Ti O2 中引入 Si O2 后 ,其结构、…  相似文献   

8.
焙烧温度对纳米级SO4^2-/TiO2固体超强酸性能的影响   总被引:10,自引:2,他引:10  
用锐钛型纳米TiO2制备了纳米级SO4^2-/TiO2固体超强酸,考查了焙烧温度对酸强度、比表面积、红外光谱及其催化活性的影响.结果显示该催化剂在450℃焙烧3h,可以形成纳米级SO4^2-/TiO2固体超强酸的结构,用该催化剂催化乙酸和丁醇酯化反应可使酯化率达到98.4%。  相似文献   

9.
MxOy—SO4^2—型固体超强酸催化剂   总被引:37,自引:0,他引:37  
姚胜 《化学通报》1990,(2):23-28
超强酸是比100%的H_2SO_4还要强的酸,即H_0<-11.93的酸。在物态上它们可以分为液态和固态,对于固体超强酸的开发与研究是近十年盛行的。目前合成出的固体超强酸大多数与液体超强酸一样,是含有卤素的(见表  相似文献   

10.
磁性超细固体酸催化剂SO4^2——ZrO2/Fe3O4的组装及表征   总被引:5,自引:1,他引:5  
将磁性Fe3O4纳米材料和SO4^2--ZrO2固体酸进行组装,制得一系列具有磁性和超细粒子结构的固体酸催化剂SO4^2--ZrO2/Fe3O4,采用XRD,TG-DTA和XPS等分析测试手段对催化剂的结构和性能进行了表征。并分析和测试了催化剂的磁学性能、比表面积、粒度分布和元素的组成等物理化学性质。该催化剂具有较小的粒度、较高的磁性及酯化催化活性,对乙酸丁酯合成反应的催化活性可达66%;利用Fe3O4的磁性可对催化剂进行分离和回收。经高温处理后,固体超强酸的形成对催化剂磁性、比表面积、表相原子的电子结合能以及各组分形态均有显著影响。  相似文献   

11.
通过沉淀、回流和掺杂等方法制备了ZrO2呈四方相及单斜相的SO4^2-/ZrO2(SZ),并用XRD,TEM,低温N2-BET和吡啶吸附IR等技术定量测量地测定和探讨了SZ的结构特征和表面超强酸性及其对丁烷异构化反应的催化活性,结果表明,ZrO2呈单斜相结构的SZ表面Broensted(B)酸与Lewis(L)酸的浓度比[B]/[L]较ZrO2以四方相为主的SZ高约40%,但其对丁烷异构化反应的比催化活性则较后者低约31%,由掺Mg^2 所制备的ZrO2呈四方相的SMZ具有与ZrO2呈纯单斜相的SZ非常接近的[B]/[L]比,且表现出比末掺Mg^2 的ZrO2以四方相为主的SZ更高的比催化活性,从催化剂晶结构对表面B酸浓度及强度影响的角度进行了讨论。  相似文献   

12.
用低温陈化和添加稀土添加剂 (硝酸镧 )的方法制备了 SO2 - 4/Zr O2 -Ti O2 固体超强酸 ,用 IR和 XRD对样品进行了表征 .并通过在 3 5℃条件下催化正丁烷异构化反应和流动指示剂法考察了 Zr和 Ti的摩尔比以及稀土添加剂对样品的酸性和催化活性的影响 . IR和 XRD谱图显示 ,该条件下制备的样品具有较多的超强酸位 ,其晶体为 Ti O2 的锐钛矿晶相结构  相似文献   

13.
制备了固体超强酸催化剂SO2 -4/TiO2 WO3 ,并以丁酸丁酯的合成作为探针反应 ,系统考察了WO3 的含量、硫酸浸渍浓度、焙烧温度等制备条件对SO2 -4/TiO2 WO3 催化活性的影响 .实验表明 :制备催化剂的适宜条件为m(H2 WO4) =12 5 % ,硫酸浸渍浓度为 1 0mol·L-1,焙烧温度为 5 80℃ ,活化时间 3h .利用优化条件下制备的催化剂SO2 -4/TiO2 WO3 催化合成缩醛 (酮 ) ,在醛 /酮与二元醇 (乙二醇 ,1,2 丙二醇 )的投料摩尔比为 1∶1 5 ,催化剂的用量占反应物总投料质量的 0 5 % ,反应时间为 1h条件下 ,2 甲基 2 乙氧羰甲基 1,3 二氧环戊烷的收率为 78 7% ,2 ,4 二甲基 2 乙氧羰甲基 1,3 二氧环戊烷的收率为 83 0 % ,环己酮 -乙二醇缩酮的收率为 85 9% ,环己酮 1,2 丙二醇缩酮的收率为 84 6% ,丁酮 -乙二醇缩酮的收率为70 7% ,丁酮 1,2 丙二醇缩酮的收率为 88 3 % ,2 丙基 1,3 二氧环戊烷的收率为 80 6% ,4 甲基 2 丙基 1,3 二氧环戊烷的收率为 79 6% ,2 异丙基 1,3 二氧环戊烷的收率为 64 2 % ,4 甲基 2 异丙基 1,3 二氧环戊烷的收率为 83 3 % ,2 苯基 1,3 二氧环戊烷的收率为 75 3 % ,4 甲基 2 苯基 1,3 二氧环戊烷的收率为 95 1% .  相似文献   

14.
首次报道了由浸渍过硫酸根的方式制备固体超强酸.讨论了焙烧温度、浸渍浓度以及ZrO_2前驱体沉淀条件对样品性质的影响,并研究了它们对正丁烷异构化反应性能.实验结果表明,600~650℃焙烧、0.25~0.50mol/LS_2O_8~(2-)浸渍反加沉淀的ZrO_2具有最高超强酸性.与相同条件下制备的SO_4~(2-)/ZrO_2相比,S_2O_8~(2-)/ZrO_2上正丁烷250℃异构化活性是SO_4~(2-)/ZrO_2的2倍,可能是由于它具有较多的中强酸位并具有与SO_4~(2-)/ZrO_2不同的活性位结构.  相似文献   

15.
本文用红外光谱和程序升温氨脱附对SO~(2-)_4/ZrO_2超强酸催化剂的 表面酸性特征进行了研究,并结合X-光电子能谱分析结果和催化剂 上甲醇转化反应的结果得到了如下一些重要信息;1、在焙烧温度不太 高时催化剂表面除存在Lewis酸外还有Bronsted酸后者的强酸性是 通过结构(Ⅱ)式所体现出来的.且B酸随焙烧温度的升高而增多;2、 H_2SO_4的浓度和焙烧温度都是影响酸强度分布的重要因素.当H_2SO_4 浓度为1mol/L或焙烧温度低于773K时,催化剂表面强酸中心最多; 3、甲醇转化为二甲醚在较弱的酸中心上就可进行,而生成烃的反应不 仅要求强酸中心而且是在B酸中心上进行的。  相似文献   

16.
以固体超强酸SO4^2-/ZrO2-Fe2O3催化合成醋酸异戊酯   总被引:1,自引:0,他引:1  
古绪鹏  万玉保  胡国和 《合成化学》2005,13(3):284-286,303,i004
以合成醋酸异戊酯为探针反应,筛选出制备固体超强酸SO2-4 /ZrO2- Fe2O3 (SZF -1 )的最佳工艺条件为:ZrOCl2·8H2O9. 7g, FeCl3·6H2O16. 2g, 常温陈化24h, 0. 5mol·L-1 H2SO4 (15mL·g-1 )浸泡5h, 550℃焙烧3h。以SZF 1为催化剂合成醋酸异戊酯的反应条件为:异戊醇200mmol, n(异戊醇)∶n(醋酸) =1. 0∶1. 3, SZF -1 1g(反应物总质量的3% ), 环己烷15mL, 回流反应3h, 酯化率93. 47%。催化剂连续使用6次后酯化率仍在70%以上。  相似文献   

17.
采用共沉淀法和浸渍法在不同条件下制备了V2O5-SO42-/ZrO2-Al2O3系列固体超强酸催化剂.使用乙酸与正丁醇酯化反应评价了催化剂活性,并通过热重、X射线衍射、红外光谱、比表面积测定和X射线光电子能谱等表征方法考察了催化剂结构和性能的关系.结果表明,载体在0℃陈化,最终样品于600℃焙烧,钒浸渍浓度为0.005 mol/L,且后于硫酸溶液浸渍时制得的催化剂活性最高,酯化率为99.71%,且具有较好的重复使用性.V的引入使活性四方相ZrO2更加稳定,0℃陈化促进了四方相ZrO2微晶生成,600℃焙烧使催化剂既具有较多活性四方相ZrO2,又具有较大比表面积,从而提高了催化剂活性.催化剂中形成了固体超强酸结构,且改性后S=O吸收峰及劈裂程度增强,催化剂活性中心数目增加,Al2O3,ZrO2,SO42-和助剂V发生了相互作用.低温陈化虽然提高了催化剂的活性,但是略微降低了催化剂的热稳定性.  相似文献   

18.
采用纳米化学制备技术合成了新型的纳米固体超强酸催化剂SO2-4/ZrO2-SiO2.该催化剂对醋酸和脂肪醇的酯化反应有很好的催化作用,并具有耐水性强,再生容易,可重复使用,不腐蚀设备,不污染环境等优点,是对环境友好并具有应用前景的绿色工业催化剂.用XRD、XPS、TEM、IR和化学分析等手段分析了SO2-4/ZrO2-SiO2的晶化过程、比表面积、含硫量.结果表明,浸渍液H2SO4浓度、焙烧温度、沉淀条件、比表面积和含硫量均明显影响SO2-4/ZrO2-SiO2的酸强度及催化活性.SO2-4/ZrO2-SiO2最佳制备条件:陈化温度为0℃,浸渍液H2SO4浓度为0 5mol/L,焙烧温度为650℃,焙烧时间为3h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号