首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fast liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the analysis of acetylcholine (ACh) in cultured cells. [(2)H(4)]Acetylcholine (ACh-d(4)) was used as an internal standard for calibration. ACh was extracted from the cell lysate with acetonitrile (ACN)/water (80/20, v/v) and the crude extract was analyzed without further purification. Isocratic hydrophilic interaction chromatography (HILIC) with (10 mM) ammonium formate/ACN (35/75, v/v) as mobile phase was used for separation. ACh was eluted within 5 min and detected using electrospray-MS/MS in the positive ion mode. The limit of detection (LOD) was found to be 1.5f mol (0.3 nmol/L) ACh with a S/N ratio of 3:1. The approach was used for the measurement of ACh in undifferentiated SN56 cells and the ACh content was determined to be 1272+/-109 pmol/mg protein.  相似文献   

2.
Summary To assess the interlaboratory variation in the results of albumin measurements, we prepared albumin solutions in human urine at various concentrations within the normal range. Since some investigators have reported that albumin is unstable in some human urine samples stored at –20°C, we screened urine samples from 21 persons to identify samples that were stable under these conditions and that had low native albumin content. The urine of two donors met these criteria, and they provided urine, which we prefiltered, sterile-filtered, and spiked with commercially available human serum albumin. The albumin was characterized as pure by a Lowry assay of protein content with National Institute of Standards and Technology bovine serum albumin (standard reference material 926) as the standard and by the appearance of one band on agarose gel electrophoresis. To evaluate the necessity for additional stabilization when urine samples are stored at –20°C, a surfactant was included in one set of materials and not included in another. The materials with surfactant have been evaluated for 10.5 months and those without surfactant for 5 months. The preserved materials showed no significant loss of activity during this period. The unpreserved materials remained stable for 2 months, and then the two higher level materials appeared to loose activity. The negative slope of the highest level of unpreserved material was statistically significant (p=0.01) during this period. In our laboratory, the albumin recovered by enzyme immunoassay was 106.7% and 115.9% in two preserved normal-range materials and 102.2% and 106.3% in similar unpreserved materials.  相似文献   

3.
Until now no synthetic polymer surface was available suitable for cardiovascular implantation which effectively prevents microthrombosis for a long time. The presented concept of our work is to develop a polymer surface to promote the growth of a durable endothelial cell monolayer which would be formed on the prothesis prior to implantation. A microporous polyetherurethane foil is being used as carrier polymer for the cell monolayer. Suitable functional groups are grafted on the polymer surface by plasma polymerization. The success of the first modification steps is followed by ESCA-analysis and scanning electron microscopy. The modified carrier polymer is the starting material for covalent binding of biopolymers which react as adhesion supporter between the synthetic polymer surface and the endothelial cells.  相似文献   

4.
Phosphorylation is the most widely studied posttranslational modification (PTM) and is an important regulatory mechanism used during cellular responses to external stimuli. The kinases and phosphatases that regulate protein phosphorylation are known to be affected in many human diseases. Cigarette smoking causes cardiovascular disease (CVD). Endothelial cells play a pivotal role in CVD initiation and development; however, there have been limited investigations of the specific signaling cascades and protein phosphorylations activated by cigarette smoke in endothelial cells. The purpose of this research was to better understand the differential protein phosphorylation in endothelial cells stimulated with extracts of cigarette smoke total particulate matter (CS-TPM) in vitro. Human microvascular endothelial cells were exposed in vitro to CS-TPM at concentrations that were shown to cause endothelial cell dysfunction. The phosphorylated proteins were isolated using phosphoprotein-specific chromatography, followed by enzymatic digestion and nano-flow capillary liquid chromatography (ncap-LC) coupled to high resolution mass spectrometry. This study putatively identified 94 proteins in human microvascular endothelial cells that were differentially bound to a phosphoprotein-specific chromatography column following exposure to CS-TPM suggesting differential phosphorylation. Pathway analysis has also been conducted and confirmations of several observations have been made using immunoaffinity-based techniques (e.g., Western blotting). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
This study was designed to determine the in vitro angiogenic ability of far-infrared (FIR) radiation in the skin-derived cultured human microvascular endothelial cells and to elucidate the role of mitogen-activated protein kinases (MAPKs) in this process. The results revealed that FIR radiation from a WS(TM) TY301 FIR emitter activated p38 and extracellular signal-regulated kinase (ERK), but not Akt or c-Jun N-terminal protein kinases (JNK), and significantly promoted angiogenesis by increasing tube formation in Matrigel and the migration of cells across an eight micron polyester filter. The addition of 50 μM PD98059, a MEK inhibitor, significantly inhibited the activation of ERK and the enhanced angiogenesis; in contrast, the inhibition of p38 phosphorylation did not inhibit the enhanced angiogenesis. After FIR radiation, there was no increase in vascular endothelial growth factor (VEGF) isoforms (VEGF-A, -B, -C and -D) mRNA and VEGF protein, no increase phosphorylation of endothelial nitric oxide synthase (eNOS) detected using Western blotting, and no increase in NO production detected using flow cytometry in cells pre-incubated with the cell-permeable NO-binding dye diluted 4-amino-5-methylamino-2', 7'-difluorofluorescein diacetate (DAF-FM DA). This study revealed that FIR radiation possesses in vitro angiogenic activity via the activation of the MEK/ERK but not the VEGF/Akt/eNOS-dependent signaling pathways.  相似文献   

6.
A kinetic assay for total calcium in serum was developed which is based on the activation of Ca(++)-ATPase by free Ca(++) [Ca(++)](f) maintained by EGTA in the reaction mixture. The concentration of Ca(++)(f) was dependent on total reference calcium added or serum calcium. Ca(++)-ATPase activity was coupled to the reduction of NADH by pyruvate kinase (PK) and lactate dehydrogenase (LDH) and monitored by change in absorbance at 340 nm. The calcium in normal serum was 10.08 +/- 0.24 mg/dl (n = 35) by our method while with o-cresolphthalein complexone (CPC) method, the total calcium in the same 35 serum samples was 10.14 +/- 0.54 mg/dl. The range of within-run coefficient of variations (CVs) by this method was 0.9-2.87% at 8-12 mg/dl and day-to-day CVs were 0.72-3.17%. The presence of other ions and standard clinical interfering agents did not affect this assay system. The correlation between values obtained with our method (y) and CPC method (x) for normal serum was: y = 1.064x-0.580 mg/dl (r = 0.912, n = 59).  相似文献   

7.
8.
A facile approach to a highly bio-active interface material is reported. XPS reveals that polar entities exist at the interface between PPAam and PPAac nanolayers. They induce strong dipolar orientation polarizability and cause the redistribution of charges, which results in a remarkable increase of polar surface energy and hydrophilicity of the multistack bipolar films. In particular bipolar films with amine groups on their outermost surface show strongly enhanced cellular mobility. The attachment, adhesion, proliferation, migration, and coverage of ECs are significantly enhanced on such films. They are therefore promising as vascular implant materials, and could have applications as coating materials for tissue engineering.  相似文献   

9.
This paper reviews the functional polymer membrane and membrane based cell drug evaluation models for drug discovery. Based on the characteristics of biological membranes in vivo, chemical modification methods of synthetic membrane, including blending and surface modification are explored to mitigate the membrane fouling and improve biocompatibility. Different membrane-based cell models used in drug investigation and related trouble shooting are analyzed in detail. Specific attention is given to the current studies on ADME/Tox of drugs using membrane-based in vitro models of cells including Caco-2, hepatocytes or renal cells, which can be used to evaluate the feasibility of polymer membrane in drug investigation. The progress toward solving present bottlenecks of the facilitated cell models are supposed to provide great benefits to drug discovery in pharmaceutical industry.  相似文献   

10.
Bioassay-guided fractionation of Gardeniae Fructus extract (GFE), which stimulates the proliferation of cultured endothelial cells, led to the isolation of glycerol and D-mannitol. Both compounds significantly increased the incorporation of [3H]thymidine and [14C]leucine into the acid-insoluble fraction of bovine aortic endothelial cell layers in culture. This clearly indicated that glycerol and D-mannitol are active components of GFE on endothelial cell proliferation. On the other hand, they did not change the number of cultured vascular smooth muscle cells from bovine aorta. Glycerol and D-mannitol may be beneficial drugs for vascular disorders.  相似文献   

11.
Tissue engineering research is increasingly relying on the use of advanced cultivation technologies that provide rigorously-controlled cell microenvironments. Herein, we describe the features of a micro-fabricated Multi-Shear Perfusion Bioreactor (MSPB) designed to deliver up to six different levels of physiologically-relevant shear stresses (1-13 dyne cm(-2)) to six cell constructs simultaneously, during a single run. To attain a homogeneous fluid flow within each construct, flow-distributing nets photo-etched with a set of openings for fluid flow were placed up- and down-stream from each construct. Human umbilical vein endothelial cells (HUVECs) seeded in alginate scaffolds within the MSPB and subjected to three different levels of shear stress for 24 h, responded accordingly by expressing three different levels of the membranal marker Intercellular Adhesion Molecule 1 (ICAM-1) and the phosphorylated endothelial nitric oxide synthetase (eNOS). A longer period of cultivation, 17 d, under two different levels of shear stress resulted in different lengths of cell sprouts within the constructs. Collectively, the HUVEC behaviour within the different constructs confirms the feasibility of using the MSPB system for simultaneously imposing different shear stress levels, and for validating the flow regime in the bioreactor vessel as assessed by the computational fluid dynamic (CFD) model.  相似文献   

12.
The phototoxic effect of meso-tetra-hydroxyphenyl-chlorin (mTHPC)-mediated photodynamic therapy (PDT) on human microvascular endothelial cells (hMVEC) was compared with that on human fibroblasts (BCT-27) and two human tumor cell lines (HMESO-1 and HNXOE). To examine the relationship between intrinsic phototoxicity and intracellular mTHPC content, we expressed cell survival as a function of cellular fluorescence. On the basis of total cell fluorescence, HNXOE tumor cells were the most sensitive and BCT-27 fibroblasts the most resistant, but these differences disappeared after correcting for cell volume. Endothelial cells were not intrinsically more sensitive to mTHPC-PDT than tumor cells or fibroblasts. Uptake of mTHPC in hMVEC increased linearly to at least 48 h, whereas drug uptake in the other cell lines reached a maximum by 24 h. No difference in drug uptake was seen between the cell lines during the first 24 h, but by 48 h hMVEC had a 1.8- to 2.8-fold higher uptake than other cell lines. Endothelial cells showed a rapid apoptotic response after mTHPC-mediated PDT, whereas similar protocols gave a delayed apoptotic or necrotic like response in HNXOE. We conclude that endothelial cells are not intrinsically more sensitive than other cell types to mTHPC-mediated PDT but that continued drug uptake beyond 24 h may lead to higher intracellular drug levels and increased photosensitivity under certain conditions.  相似文献   

13.
A new experimental method to obtain internal pressure profiles in a hollow fiber membrane was demonstrated. The experimentally obtained internal pressure profiles were compared with the theoretically calculated ones based on Hagen–Poiseuille equations. The experimental and theoretical results agreed very well in clean water conditions only when accurate membrane permeabilities and effective internal diameters were available. New experimental methods to obtain the two parameters were demonstrated. The same experimental technique was also applied for the submerged hollow fiber membranes filtering activated sludge to find out how internal pressure profiles were changing with time. Based on the pressure profiles, evidences that indicated the local flux near membrane exit was lower than those in adjacent area were found. This observation contradicted to the filtration models based on critical flux concept. It was considered that the cake layer collapse near the membrane exit was the cause. Though there was some degree of delay in pressures detection, the method demonstrated in this study provided a great accuracy when pressure profiles did not change rapidly.  相似文献   

14.
A method based on microchip electrophoresis (MCE) with chemiluminescence (CL) detection was developed for the determination of ascorbic acid (AA) and amino acids including tryptophan (Trp), glycine (Gly) and alanine (Ala) present in single cells. Cell injection, loading, lysing, electrophoretic separation and CL detection were integrated onto a simple cross microfluidic chip. A single cell was loaded in the cross intersection by electrophoretic means through applying a set of potentials at the reservoirs. The docked cell was lysed rapidly under a direct electric field. The intracellular contents were MCE separated within 130 s. CL detection was based on the enhancing effects of AA and amino acids on the CL reaction of luminol with K3[Fe(CN)6]. Rat hepatocytes were prepared and analyzed as the test cellular model. The average intracellular contents of AA, Trp, Gly and Ala in single rat hepatocytes were found to be 38.3, 5.15, 3.78 and 3.84 fmol (n = 12), respectively.  相似文献   

15.
16.
17.
Theoretical analysis and experimental observations have shown that tensile stress inside an endothelial cell membrane is capable of growing in the direction opposite to blood flow and can accumulate to a level that is three or more orders of magnitude higher than flow-induced shear stress on the membrane surface. This phenomenon is called cell membrane tension accumulation (CMTA). We hypothesize that correlation may exist between the endothelial cell monolayer length or CMTA and secretory function of endothelial cells. To verify this hypothesis, a paired experimental study was devised to measure the secretion of endothelin (ET-1) and angiotensin II (Ang II) by two monolayers of cultured human glomerular vascular endothelial cell (HGVEC) monolayers subjected an identical steady shear stress. After replicate cultured HGVEC monolayer with two kinds of length of 6 cm and 10 cm were subjected to the same steady laminar shear stress of 0.45 N/m2 for 24 h, the average secretion rates of ET-1 and Ang II in 6 cm long increased l.7- and 0.5-fold (n=26, P<0.00l) over 10 cm long, respectively. Over 10 h of exposure to 0.65 N/m2, the average secretion rate of both ET-1 and Ang II by HGVEC monolayer of 6 cm in length exceeded 0.5-fold (n=26, P<0.0001) over 10 cm in length. All these demonstrated that the close relationship may exist between length of endothelial cell monolayer and secretion of ET-1 and Ang II by endothelial cells, indicating the possible existence of the cumulative effect of the tensile stress in the upper endothelial cell membrane under the shear flow field.  相似文献   

18.
Detection and purification of novel bioactive peptides from biological sources is a scientific task that led to a substantial number of important discoveries. One major laborious approach used is the repetitive stepwise separation of the test sample into several fractions followed by the determination of their bioactivity, until purity allows for sequence identification. We tested whether functional peptidomics, a combination of biological read-outs with differential peptide display (DPD) is a suitable strategy to isolate bioactive peptides at lower workload and with improved success. Additionally, we evaluated the use of DPD to monitor the processing status of proinsulin by inhibition of the insulin processing pathway. The rat insulinoma cell line INS-1 stimulated either with 2 mmol/l or 10 mmol/l glucose was used as model to generate differential peptide displays. In parallel, the bioactivity of the supernatants from the INS-1 cells was measured by glucose uptake and lipolysis assays using the adipocyte cell line 3T3-L1. We were able to quickly and elegantly trace the known activity of insulin to increase glucose uptake and inhibit lipolysis. Following re-chromatography of selected fractions, relevant peptides were identified by DPD and bioassays: the rat insulin-1 precursor and two different insulin peptides. We demonstrated in a semi-quantitative fashion that inhibition of proinsulin processing leads to accumulation of the insulin precursor, and reduced secretion of insulin-1. Thus, we conclude that DPD is an attractive support technology in peptide purification strategies aiming to identify bioactive compounds, and is superior to ELISA in discriminating between the processing status of insulin and its precursor.  相似文献   

19.
Cerebral ischemic injury is one of the debilitating diseases that showed inflammation plays an essential role in aggravating ischemic damage. After synthesizing silica nanoparticles (SiO2 NPs) by sonochemical method, serum parameters in the presence of different concentrations of SiO2 NPs are measured for toxicity assay. Rats were separated randomly into control, ischemia/reperfusion, and ischemia/reperfusion + SiO2 NPs groups. Transient forebrain ischemia induced with bilateral occlusion of both common carotid arteries followed by 60minuts of reperfusion. SiO2 NPs were administered (500 mg/kg/day p.o.) 21 days before ischemia/reperfusion time. Animals sacrificed and frontal cortex and hippocampal tissues used to determine malondialdehyde (MDA) level, nitric oxide (NO), glutathione (GSH) levels, an essential antioxidant, superoxide dismutase (SOD), alterations in the level of cytokines, TNFα, IL-1β, MCP-1, and phosphor Ik-кB. We also revealed the involvement of NF-κB downregulation by using western blotting. We reported on a histological investigation. The results showed that SiO2 NPs with a diameter of around 50 nm in dose of 500 mg/kg didn't change the level of liver enzyme (including ALT, AST and ALP) and hematological parameters. 500 mg/kg SiO2 NPs showed significant effects on remission of behavioral impairment. Ischemia/reperfusion oxidative injury in the rat hippocampus demonstrated a significant increase in MDA, TNFα, MCP-1, IL-1β, phosphor Ik-кB, NO levels, and a significant decrease in GSH contents and SOD activities in the hippocampal tissue compared to the control group. Pretreatment of ischemic rats with SiO2 NPs decreased the elevated levels of MDA, TNFα, MCP-1, IL-1β, phosphor Ik-кB, and NO levels. A significant alteration observed in SOD activities and GSH content results between treated and untreated ischemia/reperfusion brains in rats. Decreased protein level of NF-κB also measured in SiO2 NPs-treated animals. Untreated ischemia/reperfusion brains had significantly decreased in number of cells in CA1 hippocampus, nevertheless SiO2 NPs increase the normal cell and decrease the neurodegeneration in hippocampus but it was not significant alteration. SiO2 NPs reduced the damage caused by cerebral ischemia/reperfusion in rats and its molecular mechanism attributed to the downregulation of NF-κB signaling pathway.  相似文献   

20.
Recent research on erythrocytes as model cells for photodynamic therapy showed differing behaviour of certain photosensitisers in erythrocytes compared to other cells. Differences of dye accumulation in the cell membrane were proposed to be the reason for the distinct photodynamic effects. Using pheophorbide a as an example, the combination of erythrocyte ghosts as models to follow the dye accumulation in the cell membrane and intact erythrocytes as model cells to show the photodynamic damage is provided. Evidence for the correctness of the combination of erythrocyte ghosts and intact erythrocytes as a functioning model system in photodynamic cell research is provided using the confocal laser scanning microscopy on intact, pheophorbide a loaded erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号