首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HPLC with UV and acidified potassium permanganate chemiluminescence detection, combined with multivariate data analysis techniques, were used for the geographical classification of some Australian red (Cabernet Sauvignon) and white (Chardonnay) wines from two regions (Coonawarra and Geelong). Identification of the wine constituents prominent in the chromatography was performed by mass spectrometry. Principal components analysis and linear discriminant analysis were used to classify the wines according to region of production. Separation between regions was achieved with both detection systems and key components leading to discrimination of the wines were identified. Using two principal components, linear discriminant analysis with UV detection correctly classified 100% of the Chardonnay wines and, overall 91% of the Cabernet Sauvignon wines. With acidified potassium permanganate chemiluminescence detection, 75% of the Chardonnay wines and 94% of the Cabernet Sauvignon wines were correctly classified using two factors.  相似文献   

2.
The antioxidant activities in the Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China were measured by different analytical assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH·), cupric reducing antioxidant capacity (CUPRAC), superoxide radical-scavenging activity (SRSA) and the contents of total phenols, total flavonoids, total flavanols and total anthocyanins were determined. The results showed that the contents of phenolic compounds and the levels of antioxidant activity in the wine samples greatly varied with cultivar and environmental factors of vine growth. The contents of phenolic compounds and antioxidant activities in Cabernet Sauvignon and Merlot wines from the Yuquanying region of Ningxia were significantly higher than other three regions, followed by the wines from Shacheng region of Hebei, and these parameters were the lowest in Cabernet Sauvignon and Merlot wines from the Changli regions of Hebei and Xiangning region of Shanxi. Taken together, a close relationship between phenolic subclasses and antioxidant activity was observed for the wine samples. Moreover, there were significant discrepancies in the individual phenolic composition and content of four regional Cabernet Sauvignon and Merlot wines, among which the individual phenolic compounds (catechin, epicatechin, cinnamic acid, quercetin-3-O-glucuronide, quercetin-3-O-glucoside, laricitrin-3-O-glucoside and isorhamnetin-3-O-glucoside) revealed a significant correlation (p < 0.05) with the antioxidant capacity in present study, especially for catechin and epicatechin.  相似文献   

3.
A sensitive solid-phase microextraction and gas chromatography-pulsed flame photometric detection technique was developed to quantify volatile sulfur compounds in wine. Eleven sulfur compounds, including hydrogen sulfide, methanethiol, ethanethiol, dimethyl sulfide, diethyl sulfide, methyl thioacetate, dimethyl disulfide, ethyl thioacetate, diethyl disulfide, dimethyl trisulfide and methionol, can be quantified simultaneously by employing three internal standards. Calibration curves were established in a synthetic wine, and linear correlation coefficients (R2) were greater than 0.99 for all target compounds. The quantification limits for most volatile sulfur compounds were 0.5 ppb or lower, except for methionol which had a detection limit of 60 ppb. The recovery was studied in synthetic wine as well as Pinot noir, Cabernet Sauvignon, Pinot Grigio, and Chardonnay wines. Although the sulfur compounds behaved differently depending on the wine matrix, recoveries of greater than 80% were achieved for all sulfur compounds. This technique was applied to analyze volatile sulfur compounds in several commercial wine samples; methionol concentrations were found at the ppm level, while the concentrations for hydrogen sulfide, methanethiol, and methyl thioacetate were at ppb levels. Only trace amounts of disulfides and trisulfides were detected, and ethanethiol was not detected.  相似文献   

4.
陶永胜  李华  王华 《分析化学》2008,36(5):653-657
可视化技术被引入葡萄酒香气成分数据的分析,以达到鉴别区分不同产区葡萄酒的目的。葡萄酒分析样品是2005年赤霞珠干红葡萄酒产品。5个产区是河北昌黎、新疆玛纳斯、云南弥勒、宁夏贺兰山东麓和河北沙城。香气成分用二氯甲烷连续萃取,有机相真空浓缩之后进行GC-MS分析检测。共鉴定并半定量分析出5个产区赤霞珠干红葡萄酒中68种香气成分,对原始色谱分析数据进行标准归一化处理,将信息映射到[0,1]之间的灰度图空间,然后根据数据可视化原理,用Vc 构建含多种香气成分信息的二维灰度图,直观表征不同产地赤霞珠干红葡萄酒的香气成分信息。研究结果是一种反映葡萄酒化学信息的条形码技术,该技术转换葡萄酒香气成分色谱数据之后得到二维灰度图,能够良好区分不同产区的赤霞珠干红葡萄酒。  相似文献   

5.
The complex aroma of wine is derived from many sources, with grape-derived components being responsible for the varietal character. The ability to monitor grape aroma compounds would allow for better understanding of how vineyard practices and winemaking processes influence the final volatile composition of the wine. Here, we describe a procedure using GC–MS combined with headspace solid-phase microextraction (HS-SPME) for profiling the free volatile compounds in Cabernet Sauvignon grapes. Different sample preparation (SPME fiber type, extraction time, extraction temperature and dilution solvent) and GC–MS conditions were evaluated to optimize the method. For the final method, grape skins were homogenized with water and 8 ml of sample were placed in a 20 ml headspace vial with addition of NaCl; a polydimethylsiloxane SPME fiber was used for extraction at 40 °C for 30 min with continuous stirring. Using this method, 27 flavor compounds were monitored and used to profile the free volatile components in Cabernet Sauvignon grapes at different maturity levels. Ten compounds from the grapes, including 2-phenylethanol and β-damascenone, were also identified in the corresponding wines. Using this procedure it is possible to follow selected volatiles through the winemaking process.  相似文献   

6.
Analysis of 34 Sauvignon Blanc wine samples from three different countries and six regions was performed by gas chromatography-mass spectrometry (GC-MS). Linear discriminant analysis (LDA) showed that there were three distinct clusters or classes of wines with different aroma profiles. Wines from the Loire region in France and Australian wines from Tasmania and Western Australia were found to have similar aroma patterns. New Zealand wines from the Marlborough region as well as the Australian ones from Victoria were grouped together based on the volatile composition. Wines from South Australia region formed one discrete class. Seven analytes, most of them esters, were found to be the relevant chemical compounds that characterized the classes. The grouping information obtained by GC-MS, was used to train metal oxide based electronic (MOS-Enose) and mass spectrometry based electronic (MS-Enose) noses. The combined use of solid phase microextraction (SPME) and ethanol removal prior to MOS-Enose analysis, allowed an average error of prediction of the regional origins of Sauvignon Blanc wines of 6.5% compared to 24% when static headspace (SHS) was employed. For MS-Enose, the misclassification rate was higher probably due to the requirement to delimit the m/z range considered.  相似文献   

7.
This work was undertaken to evaluate whether it is possible to determine the variety of a Chinese wine on the basis of its volatile compounds, and to investigate if discrimination models could be developed with the experimental wines that could be used for the commercial ones. A headspace solid-phase microextraction gas chromatographic (HS-SPME-GC) procedure was used to determine the volatile compounds and a blind analysis based on Ac/Ais (peak area of volatile compound/peak area of internal standard) was carried out for statistical purposes. One way analysis of variance (ANOVA), principal component analysis (PCA) and stepwise linear discriminant analysis (SLDA) were used to process data and to develop discriminant models. Only 11 peaks enabled to differentiate and classify the experimental wines. SLDA allowed 100% recognition ability for three grape varieties, 100% prediction ability for Cabernet Sauvignon and Cabernet Gernischt wines, but only 92.31% for Merlot wines. A more valid and robust way was to use the PCA scores to do the discriminant analysis. When we performed SLDA this way, 100% recognition ability and 100% prediction ability were obtained. At last, 11 peaks which selected by SLDA from raw analysis set had been identified. When we demonstrated the models using commercial wines, the models showed 100% recognition ability for the wines collected directly from winery and without ageing, but only 65% for the others. Therefore, the varietal factor was currently discredited as a differentiating parameter for commercial wines in China. Nevertheless, this method could be applied as a screening tool and as a complement to other methods for grape base liquors which do not need ageing and blending procedures.  相似文献   

8.
One hundred and one volatile compounds, reported in literature as powerful odorants of wine, were quantified by Gas Chromatography-Selective Ion Monitoring/Mass Spectrometry (GC-SIM/MS) in Primitivo, Aglianico, Merlot and Cabernet Sauvignon red wines. Wine samples were extracted by 3 different extraction methods: 1) separation of the alcoholic fraction from the aqueous phase by salting-out and subsequent extraction by liquid-liquid micro-extraction with 1,1,2-trichlorotrifluoroethane (Freon 113); 2) extraction by liquid-liquid micro-extraction with dichloromethane; 3) solid phase extraction (SPE cartridge: 800 mg of LiChrolut EN resin) with pentane-dichloromethane (20:1) and dichloromethane. The selection of the ion fragments used for quantification was directly performed on a red wine sample. For each compound the area of the corresponding peak was normalized respect to the peak of the internal standard and then interpolated in a calibration curve obtained analysing a model wine solution (water, ethanol, tartaric acid and known amounts of analytes and of internal standard). The methods showed a good linearity: r2>0.990, except for farnesol (isomer a and c), octanal, decanal, furaneol and phenylacetic acid with 0.966 < or = r2 < or = 0.990. The 7 most powerful odorants were: beta-damascenone, acetaldehyde, maltol, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate, 3-methylbutanoic acid and acetal; 7 other slightly less important were: ethyl hexanoate, ethyl acetate, 1-octen-3-ol, butanoic acid, rose oxide, furaneol and sotolon. The Aglianico wines were characterised by the major fermentation compounds (esters, fatty acids and 2-phenylethanol), beta-damascenone, beta-ionone and linalool. The Primitivo wines were characterized by furaneol, methoxypyrazine, gamma-nonalactone and acetaldehyde, while Cabernet Sauvignon and Merlot wines principally by cask derivates (vanillin, (Z) 3-methyl-gamma-octalactone [(Z) wiskylactone], maltol and eugenol), some aldehydes and 3-isopropyl-2-methoxypyrazine.  相似文献   

9.
Quantitative analysis of 2-methoxy-3-isobutylpyrazine (MIBP) in grapes and wines was developed, using a stable isotope dilution assay. This was applied to red grapes and wines from the Bordeaux region. The grapes and the wines of the 1995 and 1996 vintages came from the three most frequently used varieties of the region, Merlot, Cabernet Franc and Cabernet Sauvignon. The wines made from Cabernet Sauvignon grapes exhibited levels of MIBP (mean concentration, 12 ng l-1 for 1996 vintage and 13 ng l-1 for 1995 vintage) close to or higher than its odour threshold in wines (10 ng l-1) and slightly higher than the amounts found in the Merlot wines (mean concentration, 8 ng l-1 for 1996 vintage and 4 ng l-1 for 1995 vintage), especially those of the 1996 vintage. The variation in the levels of MIBP in grape samples and in their corresponding wines was monitored at four different stages towards the end of maturation. MIBP was present in all grapes and wines analysed, even in surmaturation. A linear trend was observed between grapes and wines of the three cultivars during maturation.  相似文献   

10.
Characteristic aroma volatile compounds from different parts of cayenne pineapple were analyzed by headspace-solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC/MS). The main volatile compounds were esters, terpenes, ketones and aldehydes. The number and content of aroma compounds detected in pulp were higher than those found in core. In pulp, the characteristic aroma compounds were ethyl 2-methylbutanoate, ethyl hexanoate, 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF), decanal, ethyl 3-(methylthio)propionate, ethyl butanoate, and ethyl (E)-3-hexenoate; while in core the main compounds were ethyl 2-methylbutanoate, ethyl hexanoate and DMHF. The highest odor units were found to correspond to ethyl 2-methylbutanoate, followed by ethyl hexanoate and DMHF. The odor units found for pulp were higher than those for core.  相似文献   

11.
This work explores to what extent the aroma or the non-volatile fractions of red wines are responsible for the overall flavor differences perceived in-mouth. For this purpose, 14 samples (4 commercial and 10 reconstituted wines), were sorted by a panel of 30 trained assessors according to their sensory in-mouth similarities. Reconstituted wines were prepared by adding the same volatile fraction (coming from a red wine) to the non-volatile fraction of 10 different red wines showing large differences in perceived astringency. Sorting was performed under three different conditions: (a) no aroma perception: nose-close condition (NA), (b) retronasal aroma perception only (RA), and (c) allowing retro- and involuntary orthonasal aroma perception (ROA). Similarity estimates were derived from the sorting and submitted to multidimensional scaling (MDS) followed by hierarchical cluster analysis (HCA). Results have clearly shown that, globally, aroma perception is not the major driver of the in-mouth sensory perception of red wine, which is undoubtedly primarily driven by the perception of astringency and by the chemical compounds causing it, particularly protein precipitable proanthocyanidins (PAs). However, aroma perception plays a significant role on the perception of sweetness and bitterness. The impact of aroma seems to be more important whenever astringency, total polyphenols and protein precipitable PAs levels are smaller. Results also indicate that when a red-black fruit odor nuance is clearly perceived in conditions in which orthonasal odor perception is allowed, a strong reduction in astringency takes place. Such red-black fruit odor nuance seems to be the result of a specific aroma release pattern as a consequence of the interaction between aroma compounds and the non-volatile matrix.  相似文献   

12.
Volatile compounds responsible for aroma of Jutrzenka liquer wine   总被引:1,自引:0,他引:1  
Jutrzenka is a sweet liquer wine produced in Poland from the grape variety of the same name, developed in Poland to withstand the harsh climate of winery regions. Jutrzenka wine has a characteristic aroma with strong fruity and flowery notes, which make it unique among other liquer wines as demonstrated in sensory profile analysis. The work was aimed at characterization of volatile compounds in this wine, with the emphasis on characterization of compounds responsible for its unique aroma. Gas chromatography-olfactometry (GC-O) was applied to identify the key odorants using aroma extract dilution analysis (AEDA) approach. To facilitate free and bound terpenes and C(13)-norisoprenoids identification solid phase extraction (SPE) was used followed by GC/MS. Among identified key odorants β-damascenone was the compound having the highest FD (4096), followed by isoamyl alcohol, 4-mercapto-4-methyl-2-pentanone (FD=2048), methional, linalool, ethyl decanoate (FD=1024) and ethyl hexanoate, furaneol (FD=512). Other significant compounds were ethyl 2-methyl propanoate, ethyl 2-methylbutanoate and phenyl ethyl alcohol. Determination of odor activity values (OAV) showed the highest values for β-damascenone (566), 4-mercapto-4-methyl-2-pentanone (288) ethyl hexanoate (32) and linalool (7). Jutrzenka exhibited also a rich profile of free, and to lesser extent bound terpenes.  相似文献   

13.
14.
A new method for the identification and the quantification of nonanthocyanin phenolic compounds from six Vitis Vinifera grape varieties native to Sardinia (three native: Vermentino, Malvasia and Cannonau and three non-native types: Chardonnay, Sauvignon and Cabernet Sauvignon; Argiolas vineyard) was developed. This rapid and selective method employs LC/ESI-MS in negative mode. Different solvents extraction and different sorbents for purification were compared to the direct analysis of the initial extracts without further sample preparation. A total of 54 phenolic compounds were identified either in the freeze-dried skins or seeds, including nonflavonoids (hydroxybenzoic and hydroxycinnamic acids and their derivatives, stilbenes) and flavonoids (flavanols, flavonols, dihydroxyflavonols).  相似文献   

15.
This study outlines the use of mid-infrared (MIR) spectroscopy combined with principal component analysis (PCA) and linear discriminant analysis (LDA) for the varietal classification of commercial red and white table wines. Three red varieties (Cabernet Sauvignon, Shiraz and Merlot) and four white varieties (Chardonnay, Riesling, Sauvignon Blanc and Viognier) were sourced from different wine regions in Australia. Wine samples were scanned in transmission on a FOSS WineScan FT 120 from wave numbers 926 to 5012 cm−1. All samples were sourced from the 2006 vintage and had not been blended with any other variety or wine from other regions. Spectral data were reduced to a small number of principal components (PCs) and LDA was then performed to successfully separate the wines into the different varieties. To test the robustness of the LDA models developed for the red wines, a set of red wines scanned in 2005 were used. Correct classification of over 95% was achieved for the validation set.  相似文献   

16.
A procedure to determine 3-alkyl-2-methoxypyrazines in wines is described. It is based on the headspace solid-phase microextraction (HS-SPME) technique after a clean-up of the sample by distillation (previously acidified to pH 0.5) to remove ethanol and other volatile compounds that can interfere in the SPME. Determination is performed by means of capillary gas chromatography using a nitrogen-phosphorus detector. The method allows quantification of 3-isobutyl-2-methoxypyrazine, 3-sec-butyl-2-methoxypyrazine and 3-isopropyl-2-methoxypyrazine at their natural concentration levels and below their sensory thresholds in Cabernet Sauvignon and Merlot wines. The method was successfully applied to experimental red wines and the evolution of their pyrazine contents during the winemaking process was monitored. Pyrazine content increased during the first maceration day but did not change significantly during alcoholic and malolactic fermentation. Final contents in wines were 12-27 ng/l of 3-isobutyl-2-methoxypyrazine and 5-10 ng/l of 3-sec-butyl-2-methoxypyrazine.  相似文献   

17.
The anti-bacterial effect of pure non-flavonoids gallic, vanillic, protocatechuic, and caffeic acids and flavonoids quercetin, rutin, and catechin and the effect of total polyphenols of three Argentinean wine varieties, Cabernet Sauvignon, Malbec, and Merlot, against Escherichia coli, microorganism frequently detected in fresh and processed foods, was investigated. The hydroxycinnamic derivate caffeic acid and the flavonoid quercetin were the more effective against E. coli. The polyphenol effect was ethanol independent. The E. coli decimal reduction times were 2.9, 2.1, and 0.65 h for Malbec wine and 2.8, 2.3, and 0.64 h for Merlot wine with respect to 1x, 2x, and 4x concentrated wine samples, respectively. For Cabernet Sauvignon wine, the values were 6.3, 3.7, and 1.28 h for 1x, 2x, and 4x concentrated samples, respectively. With clarified wines, the decimal reduction times were higher with values ranging from 15 to 18.4 h in the wine samples. So the phenolic compounds present in red wines could be considered as an interesting alternative to be used as natural preservative against pathogenic microorganisms.  相似文献   

18.
Quantitative analysis of free and hydrolytically liberated beta-damascenone in grapes and wines was developed, using a stable isotope dilution assay. Free beta-damascenone was isolated from grapes and wines by diethyl ether-hexane (1:1, v/v) extraction and the precursor(s) (glycosidic, polyols) of beta-damascenone using Sep-Pak Plus C18 RP cartridges. Hydrolytically liberated beta-damascenone was generated by acid hydrolysis from the precursor(s) extract. Red wines from Bordeaux (Merlot, Cabernet Sauvignon and Cabernet Franc, 1995 and 1996 vintage), Burgundy (Pinot Noir, 1995 and 1996 vintage) regions and Grenache wines from Chateauneuf du Pape and C?tes du Rh?ne (1995 vintage) were analysed to quantify free beta-damascenone. The wines made from Grenache and Cabernet Sauvignon (1996 vintage) grapes presented the highest mean amounts of free beta-damascenone, 5.4 and 5.5 micrograms l-1, respectively. Merlot, Cabernet Sauvignon and Cabernet Franc grapes of Bordeaux (1996 vintage) and their corresponding wines were analysed for quantification of free and hydrolytically liberated beta-damascenone. The levels of hydrolytically liberated beta-damascenone in grapes could predict closely the levels of free beta-damascenone in the corresponding wines after one year of ageing, i.e., almost half the levels found for the grape samples. The influence of enzyme and heat treatment of Merlot wine samples on their beta-damascenone levels was studied. Heat treatment doubled the levels of this compound, but enzyme treatment generated, in the corresponding wines, half the levels of beta-damascenone found in the non-enzyme treated wines.  相似文献   

19.
20.
Four different types of Chilean wines (Cabernet Sauvignon, Merlot, Carmenere and Syrah) were selected and examined in their free radical scavenging capacities by electron spin resonance (ESR) and spectrophotometric methods. The free radical scavenging properties were evaluated against 2,2-diphenyl-1-picrylhydrazyl (DPPH*) radical, 2,6-di-tert-butyl-alpha-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy (Galvinoxyl) radical and hydroxyl radical (HO*). The possible effect on these scavenging properties of added transition metals to these wines was evaluated. Among the wines evaluated, Cabernet Sauvignon was the one with the highest activity against all radicals tested. The presence of added copper or iron to wines resulted in a reduced free radical scavenging capacity for all type of wines studied. The formation of redox inactive complexes between polyphenols of wine and transition metals is the possible cause of this reduction in antioxidant activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号