首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Photodissociation dynamics of benzoic acid monomer (BAM) at different ultraviolet excitation wavelengths (280-295 nm) has been investigated. The nascent OH product state distributions were measured using the laser-induced fluorescence (LIF) technique. The rotational state distributions, the Lambda-doublet-state ratio, and spin-orbit state distributions of the OH fragment were also measured at 280-294 nm. The OH fragments are vibrationally cold, and their rotational state distributions are peaked at J' = 3.5 at each photolysis wavelength. No LIF signal of OH fragments was observed at 295 nm. The photodissociation threshold is determined to be 102.5-103.9 kcal/mol for OH channel. The dissociative state and mechanism have been discussed for OH produced from the photodissociation of BAM.  相似文献   

2.
Nitrate and Nitrite Ultraviolet Actinometers   总被引:1,自引:0,他引:1  
Abstract We developed nitrate and nitrite actinometers to determine radiant fluxes from 290 to 410 nm. These actinometers are based on the reaction of the photochemically generated OH radical with benzoic acid to form salicylic acid (SA) and p-hydroxybenzoic acid (pHBA). Actinom-eter development included determination of the temperature and wavelength dependence of the quantum yield for formation of SA and pHBA from nitrate and nitrite photolysis in air-saturated solutions. Quantum yields (at 25°C) for SA production from nitrate photolysis ranged from 0.00146 to 0.00418 between 290 and 350 nm, and from 0.00185 to 0.00633 for nitrite photolysis between 290 and 405 nm. The quantum yields for SA production were approximately 50–60% greater than quantum yields for pHBA production from nitrate and nitrite photolysis. For both actinometers, SA and pHBA formation was temperature dependent, increasing by approximately a factor of 2.2 from 0 to 35°C. Activation energies for SA formation varied with wavelength, ranging from 14.7 to 16.5 kj mol -1 between 290 and 330 nm for the nitrate actinometer and 12.3 to 17.8 kj mol-1 between 310 and 390 nm for the nitrite actinometer. Activation energies for pHBA formation were 2–11% higher. Wavelength-dependent changes in the quantum yield and activation energy for SA and pHBA formation from nitrate photolysis suggest multiple electronic transitions for nitrate from 290 to 350 nm. Quantum yields for OH radical formation from nitrate and nitrite photolyses were estimated from SA and pHBA quantum yields at 25°C. Wavelength-dependent OH quantum yields ranged from 0.007 to 0.014 for nitrate photolysis between 290 and 330 nm and from 0.024 to 0.078 for nitrite photolysis between 298 and 390 nm. The nitrate and nitrite actinometers can maintain initial rate conditions for hours, are insensitive to laboratory lighting, easy to use and extremely sensitive; the minimum radiant energy that can be detected in our irradiation system is approximately 10-9 einsteins.  相似文献   

3.
We report near-ultraviolet and visible absorption cross sections of hydrogen peroxide (H(2)O(2)) using incoherent broad-band cavity-enhanced absorption spectroscopy (IBBCEAS), a recently developed, high-sensitivity technique. The measurements reported here span the range of 353-410 nm and extend published electronic absorption cross sections by 60 nm to absorption cross sections below 1 × 10(-23) cm(2) molecule(-1). We have calculated photolysis rate constants for H(2)O(2) in the lower troposphere at a range of solar zenith angles by combining the new measurements with previously reported data at wavelengths shorter than 350 nm. We predict that photolysis at wavelengths longer than those included in the current JPL recommendation may account for up to 28% of the total hydroxyl radical (OH) production from H(2)O(2) photolysis under some conditions. Loss of H(2)O(2) via photolysis may be of the same order of magnitude as reaction with OH and dry deposition in the lower atmosphere; these processes have very different impacts on HO(x) loss and regeneration.  相似文献   

4.
The speed averaged translational anisotropy and electronic angular momentum polarization of the O(1D2) atomic fragment formed from the photodissociation of ozone in the atmospherically important long wavelength region of the Hartley band (298 to 320 nm) have been measured using resonance enhanced multiphoton ionization time of flight mass spectrometry. The translational anisotropy parameter, beta, is found to decline from 1.1 for photolysis at 300 nm to a minimum value of 0 at 310 nm which is the threshold for production of O(1D2) in conjunction with the O2(a 1Deltag v = 0) molecular cofragment. For photolysis wavelengths greater than 310 nm, O(1D2) is formed from the dissociation of internally excited ozone molecules. The corresponding beta parameters are markedly lower than for atomic fragments produced with the same speed from the photolysis of ground state ozone molecules. This result is consistent with two different pathways contributing to the photolysis of internally excited ozone at the longest wavelengths studied corresponding to initial internal excitation either in the symmetric or asymmetric stretching vibration. In addition, the polarization of the atomic angular momentum has been determined with the incoherent polarization parameters a0(2)(||) and a0(2)(_|) increasing from values of -0.53 and -0.62 at 300 nm to -0.37 and -0.19 at 317 nm, consistent with the increasing contribution from the photolysis of internally excited ozone as the dissociation wavelength lengthens. Evaluation of these alignment parameters allows the populations of the magnetic substrates, mj, to be determined. For example, for a photolysis wavelength of 303 nm the populations of mj = 0, +/- 1, +/- 2 are in the ratio of 0.36: 0.56: 0.08 and this ratio is essentially independent of the photolysis wavelength. The coherent contribution to the atomic polarization is quantified by the Re{a1(2)(||, _|)} and Im{a1(1)(||, _|)} parameters and these are found to vary from -0.21 and 0.21 at 300 nm to -0.04 and 0.24 at 313 nm, respectively.  相似文献   

5.
Methyl iodide adsorbed on a Cu(110)-I surface has been found to be highly orientationally ordered. We have exploited this orientation to select different CH(3)I excited states for photodissociation by using polarized near-UV light at wavelengths of 308, 248, and 222 nm. Using p-polarized light at all three wavelengths, we find that dissociation proceeds largely via the (3)Q(0) state, consistent with the picture from gas-phase photolysis. In contrast, using s-polarized light we find contributions from the (3)Q(1) state at lambda=308 nm, the (1)Q(1) state at lambda=248 nm, and the (E,1) state at lambda=222 nm-the latter being a state that has not been implicated in gas-phase studies of CH(3)I A-band photolysis. We also note the contribution to surface photodissociation from low-energy photoelectrons causing dissociative electron attachment to adsorbed CH(3)I and have identified the promotion of direct photodissociation pathways during lambda=308 nm photolysis.  相似文献   

6.
The photolysis of pyrrole has been studied in a molecular beam at wavelengths of 250, 240, and 193.3 nm, using two different carrier gases, He and Xe. A broad bimodal distribution of H-atom fragment velocities has been observed at all wavelengths. Near threshold at both 240 and 250 nm, sharp features have been observed in the fast part of the H-atom distribution. Under appropriate molecular beam conditions, the entire H-atom loss signal from the photolysis of pyrrole at both 240 and 250 nm (including the sharp features) disappear when using Xe as opposed to He as the carrier gas. We attribute this phenomenon to cluster formation between Xe and pyrrole, and this assumption is supported by the observation of resonance enhanced multiphoton ionization spectra for the (Xe...pyrrole) cluster followed by photofragmentation of the nascent cation cluster. Ab initio calculations are presented for the ground states of the neutral and cationic (Xe...pyrrole) clusters as a means of understanding their structural and energetic properties.  相似文献   

7.
用266 nm激光解离亚硝基苯(C6H5NO) 产生光解碎片NO,并利用单光子激光诱导荧光(LIF)技术(X2Πν″=0→A2Σ+ν′=0)测得初生态光解产物NO的振转光谱。根据计算所得的模拟光谱对光解碎片NO(X,ν″=0)的转动量子数J″进行了归属,得到量子数最大到J″=50.5的各转动能级的相对布居,这表明光解碎片NO具有较高的转动激发。提出了C6H5NO在266 nm下可能的光解机理。  相似文献   

8.
The dynamics of photodissociation of glyoxal (HOC-COH) near the dissociation threshold on the triplet manifold are studied through measurement of distributions of nascent fragment HCO in various internal states. Three rotational levels 1(01) (*), 4(13) (*), and 3(21) (*)+3(22) (*) of vibrational state U (excitation wavelength approximately 394.4 nm, origin at 25,331.865 cm(-1)) of glyoxal in state A (1)A(u) and two other vibrational states at excitation wavelengths 390.33 and 382.65 nm are selected to produce fragment HCO. By means of fluorescence in the transition B (2)A(')-X (2)A(') of HCO, we determined the relative populations of internal states of that fragment. Rotational states of product HCO up to N=26 and K=2 are populated, and bimodal distributions of these rotational states are observed for the photolysis wavelengths used in this work. The high rotational part of the distribution with average energy near values calculated on the basis of the statistical model-phase-space theory is assigned to arise from glyoxal on its S(0) surface, and the low rotational part from the T(1) surface with an exit barrier. After photolysis near the threshold region on the triplet surface, HCO arising from the T(1) state appears to be a major component of products because these rotational levels 1(01) (*), 4(13) (*), and 3(2) (*) of U state selected are gateway states with an enhanced rate of intersystem crossing.  相似文献   

9.
The D1-D0 electronic spectrum of jet-cooled cyanocyclopentadienyl (C5H4CN) radical, produced by excimer laser photolysis of 1,3-cyclopentadiene-1-carbonitrile (C5H5CN), was measured by laser-induced fluorescence (LIF). The LIF spectrum was identical to that of radicals produced by photolysis of phenyl isocyanate and o-chloroaniline, which had been assigned to phenyl nitrene. This result shows that the nascent radical product in the photolysis of o-chloroaniline and phenyl isocyanate is isomerized to C5H5CN and the final product of C5H4CN radical is derived via the second photolysis. The rotational contour of the 0-0 band of the C54CN radical, at 27143 cm−1 (368.3 nm), is also presented. The electronic transition is A-type and π electron transition, and the symmetry of both the ground and excited electronic state is 2B1 (of the C2v point group).  相似文献   

10.
The quantum yields for OH formation from the photolysis of HNO(3) were measured to be (0.88 +/- 0.09) at 248 and (1.05 +/- 0.29) at 308 nm and of H(2)O(2) to be (1.93 +/- 0.39) at 308 and (1.96 +/- 0.50) at 320 nm. The quoted uncertainties are at the 95% confidence level and include estimated systematic uncertainties. OH radicals were produced using pulsed laser photolysis and monitored using pulsed laser-induced fluorescence. Quantum yields were measured relative to the OH quantum yields from a reference system. The measured quantum yields at 248 nm are in agreement with previous direct determinations. The quantum yield values at 308 and 320 nm are the first direct quantum yield measurements at these wavelengths and confirm the values currently recommended for atmospheric model calculations. Rate coefficients (at 298 K) for the OH + H(2)O(2) and OH + HNO(3) + M (in 100 Torr of N(2)) reactions were measured during this study to be (1.99 +/- 0.16) x 10(-12) cm(3) molecule(-1) s(-1) and (1.44 +/- 0.12) x 10(-13) cm(3) molecule(-1) s(-1), respectively.  相似文献   

11.
In this paper, we have probed the dynamics of chlorine atom production from the gas phase photodissociation of carbon tetrachloride at 222 and 235 nm. The quantum yield, φ* of Cl* (2P1/2) production has been determined by probing the nascent concentrations of both excited (2P1/2) and ground state (2P3/2) chlorine atoms by suitable resonance-enhanced multiphoton ionization (REMPI) detection schemes. Although at the photolysis wavelengths the absorption of carbon tetrachloride is weak, significant amounts of Cl* are produced. Surprisingly, the quantum yield of Cl* production does not follow the absorption spectrum closely, which gives rise to the possibility of an indirect dissociation mechanism present in CCl4 along with direct dissociation at these ultraviolet wavelengths  相似文献   

12.
We report a tunable vacuum ultraviolet photodissociation study of H(2)O from different unstable resonances in the B?(1)A(1) electronic state, using the H-atom Rydberg tagging technique. The quantum state resolved OH product translational energy distributions and angular distributions have been measured. Experimental results illustrate, for the first time, that excitation to the different unstable resonances has very different effect on the OH(X) and OH(A) product channels. The OH(X) product rotational distributions vary only slightly, while the OH(A) product rotational distributions and state-resolved angular distributions change dramatically as the photolysis energy increases. Effect of parent rotational excitation on the OH(A) product has also been observed. Through careful simulations to the experimental spectra, OH(A)∕OH(X) branching ratios have been determined at five photolysis wavelengths. The general agreement between theory and experiment in the branching ratios is good. The branching ratios for the OH(A) product from different parent rotational levels are close to the nuclear spin-statistics value, which is also consistent with the extremely low rotational temperature of the H(2)O beam in the current experiment.  相似文献   

13.
Formation of the ground-state nitrogen atom, N((4)S), following 193.3-nm ArF laser irradiation of NO and NO(2) was detected directly by a technique of laser-induced fluorescence (LIF) spectroscopy at 120.07 nm. Tunable vacuum ultraviolet (VUV) laser radiation around 120.07 nm was generated by two-photon resonance four-wave sum frequency mixing in Hg vapor. Photoexcitation processes of NO and NO(2) giving rise to the N((4)S) formation are discussed on the basis of the Doppler profiles of the nascent N((4)S) atoms produced from the photolysis of NO and NO(2) and the photolysis laser-power dependence of the N((4)S) signal intensities. Using laser flash photolysis and vacuum ultraviolet laser-induced fluorescence detection, the kinetics of the reactions of N((4)S) with NO and NO(2) have been investigated at 295 +/- 2 K. The rate constants for the reactions of N((4)S) with NO and NO(2) were determined to be (3.8 +/- 0.2) x 10(-11) and (7.3 +/- 0.9) x 10(-12) cm(3) molecule(-1) s(-1), respectively, where the quoted uncertainties are 2sigma statistical uncertainty including estimated systematic error.  相似文献   

14.
Abstract— Ultraviolet light causes a type of damage to the DNA of human cells that results in a DNA strand break upon subsequent irradiation with wavelengths around 300 nm. This DNA damage disappears from normal human fibroblasts within 5 h, but not from pyrimidine dimer excision repair deficient xeroderma pigmentosum group A cells or from excision proficient xeroderma pigmentosum variant cells. The apparent lack of repair of the ultraviolet light DNA damage described here may contribute to the cancer prone nature of xeroderma pigmentosum variant individuals. These experiments show that the same amount of damage was produced at 0°C and 37°C indicating a photodynamic effect and not an enzymatic reaction. The disappearance of the photosensitive lesions from the DNA is probably enzymatic since none of the damage was removed at 0°C. Both the formation of the lesion and its photolysis by near ultraviolet light were wavelength dependent. An action spectrum for the formation of photosensitive lesions was similar to that for the formation of pyrimidine dimers and(6–4) photoproducts and included wavelengths found in sunlight. The DNA containing the lesions was sensitive to wavelengths from 304 to 340 nm with a maximum at 313 to 317 nm. This wavelength dependence of photolysis is similar to the absorption and photolysis spectra of the pyrimidine(6–4) photoproducts  相似文献   

15.
Abstract—When Compounds I and II of horseradish peroxidase in glycerol/water glasses at 77 K were irradiated with the light of a mercury lamp, some changes in optical spectra as well as the development of strong EPR signals of a free-radical type were detected. In case of photolysis of Compound I the light of wavelengths around 400 nm was the most effective, while only short wavelength (≥ 280 nm) light affected Compound II. The results of experiments with thawing and freezing the product of photolysis of Compound I (called Intermediate Y) provide further evidence for the suggestion that the ferric state of the heme iron is generated in the course of the photolysis. The quantum yields of the photolysis of Compound I at different wavelengths of irradiating light were obtained and mechanisms of the photolysis of Compounds I and II are proposed.  相似文献   

16.
Measurements of the acetyl yield from acetone photolysis have been made using laser flash photolysis/laser induced fluorescence. Phi(total)(lambda,p,T) was determined over the ranges: 266 < or = lambda/nm < or = 327.5, 0.3 < or = p/Torr < or = 400 and 218 < or = T/K < or = 295. The acetyl yield was determined relative to that at 248 nm by conversion to OH by reaction with O2. Linear Stern-Volmer plots (1/[OH] vs [M]) describe the data for lambda < 300 nm, but for lambda > 300 nm, nonlinear Stern-Volmer plots were observed. This behavior is interpreted as evidence for dissociation from two excited states of acetone: S1 when the Stern-Volmer plots are linear and both S1 and T1 when Stern-Volmer plots are nonlinear. A model for acetone photolysis is proposed that can adequately describe both the present and literature data. Barriers to dissociation are invoked in order to explain the dependence of pressure quenching of the acetone photolysis yields as a function of wavelength and temperature. This pressure quenching was observed to become more efficient with increasing wavelength, but it was only above approximately 300 nm that a significant T dependence was observed, which became more pronounced at longer wavelengths. This is the first study to observe a T-dependent phi(total)(lambda,p,T). A parametrized expression for phi(total)(lambda,p,T) has been developed and is compared against the recommended literature data by running box model simulations of the atmosphere. These simulations show that acetone photolysis occurs more slowly at the top of the troposphere.  相似文献   

17.
The room-temperature ultraviolet absorption spectrum of H2Te has been recorded. Unlike other group-6 hydrides, it displays a long-wavelength tail that extends to 400 nm. Dissociation dynamics have been examined at photolysis wavelengths of 266 nm (which lies in the main absorption feature) and 355 nm (which lies in the long-wavelength tail) by using high-n Rydberg time-of-flight spectroscopy to obtain center-of-mass translational energy distributions for the channels that yield H atoms. Photodissociation at 355 nm yields TeH(2Pi1/2) selectively relative to the TeH(2Pi3/2) ground state. This is attributed to the role of the 3A' state, which has a shallow well at large R(H-TeH) and correlates to H+TeH(2Pi1/2). Note that the 2Pi1/2 state is analogous to the 2P1/2 spin-orbit excited state of atomic iodine, which is isoelectronic with TeH. The 3A' state is crossed at large R only by 2A", with which it does not interact. The character of 3A' at large R is influenced by a strong spin-orbit interaction in the TeH product. Namely, 2Pi1/2 has a higher degree of spherical symmetry than does 2Pi3/2 (recall that I(2P1/2) is spherically symmetric), and consequently 2Pi1/2 is not inclined to form either strongly bonding or antibonding orbitals with the H atom. The 3A'<--X transition dipole moment dominates in the long-wavelength region and increases with R. Structure observed in the absorption spectrum in the 380-400 nm region is attributed to vibrations on 3A'. The main absorption feature that is peaked at approximately 240 nm might arise from several excited surfaces. On the basis of the high degree of laboratory system spatial anisotropy of the fragments from 266 nm photolysis, as well as high-level theoretical studies, the main contribution is believed to be due to the 4A" surface. The 4A"<--X transition dipole moment dominates in the Franck-Condon region, and its polarization is in accord with the experimental observations. An extensive secondary photolysis (i.e., of nascent TeH) is observed at 266 and 355 nm, and the corresponding spectral features are assigned. Analyses of the c.m. translational energy distributions yield bond dissociation energies D0. For H2Te and TeH, these are 65.0+/-0.1 and 63.8+/-0.4 kcalmol, respectively, in good agreement with predictions that use high-level relativistic theory.  相似文献   

18.
Pulsed laser photolysis combined with transient absorption spectroscopy and resonance fluorescence was used to examine the photolysis of OIO at a number of wavelengths corresponding to absorption bands in its visible spectrum between approximately 530 and 570 nm. Photolysis at 532 nm was found to result in substantial depopulation of the absorbing ground state, enabling an estimate for the absorption cross section of OIO at 610.2 nm of (6 +/- 2) x 10(-18) cm2 molecule(-1) to be obtained. No evidence was found for I atom formation following photolysis of OIO at 532, 562.3, 567.9 and 573.8 nm, enabling an upper limit to the I atom quantum yield of < 0.05 (560-580 nm) and < 0.24 (532 nm) to be established.  相似文献   

19.
The H+N3 channel in the ultraviolet photodissociation of HN3 has been investigated from 190 nm to 248 nm using the high-n Rydberg H-atom time-of-°ight technique. Product translational energy distributions as well as product angular anisotropy parameters were determined for the H+N3 channel at di?erent photolysis wavelengths. N3 vibrational state distribution has also been derived from the product translational energy distribution at these wavelengths. Above photolysis wavelength 225 nm, HN3 predominantly dissociatethrough the repulsive state. Below 225 nm, a new slow channel starts to appear at 220 nm in addition to the existing channel. This channel is attributed to a ring closure dissociation channel to produce the cyclic N3 product. As photolysis energy increases, this new channel becomes more important.  相似文献   

20.
The dynamics of the gas-liquid interfacial reaction of the first electronically excited state of the oxygen atom, O((1)D), with the surface of a liquid hydrocarbon, squalane (C(30)H(62); 2,6,10,15,19,23-hexamethyltetracosane) has been studied experimentally. Translationally hot O((1)D) atoms were generated by 193 nm photolysis of a low pressure (nominally 1 mTorr) of N(2)O a short distance (mean = 6 mm) above a continually refreshed liquid squalane surface. Nascent OH (X(2)Π, v' = 0) reaction products were detected by laser-induced fluorescence (LIF) on the OH A(2)Σ(+)-X(2)Π (1,0) band at the same distance above the surface. The speed distribution of the recoiling OH was characterized by measuring the appearance profiles as a function of photolysis-probe delay for selected rotational levels, N'. The rotational (and, partially, fine-structure) state distributions were also measured by recording LIF excitation spectra at selected photolysis-probe delays. The OH v' = 0 rotational distribution is bimodal and can be empirically decomposed into near thermal (~300 K) and much hotter (~6000 K) Boltzmann-temperature components. There is a strong positive correlation between rotational excitation and translation energy. However, the colder rotational component still represents a significant fraction (~30%) of the fastest products, which have substantially superthermal speeds. We estimate an approximate upper limit of 3% for the quantum yield of OH per O((1)D) atom that collides with the surface. By comparison with established mechanisms for the corresponding reactions in the gas phase, we conclude that the rotationally and translationally hot products are formed via a nonstatistical insertion mechanism. The rotationally cold but translationally hot component is most likely produced by direct abstraction. Secondary collisions at the liquid surface of products of either of the previous two mechanisms are most likely responsible for the rotationally and translationally cold products. We do not think it likely, a priori, that they could be produced in the observed significant yield via a statistical insertion mechanism for a molecule the size of squalane embedded in a surrounding liquid surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号