共查询到20条相似文献,搜索用时 31 毫秒
1.
Shibayama M Kawada H Kume T Matsunaga T Iwai H Sano T Osaka N Miyazaki S Okabe S Endo H 《The Journal of chemical physics》2007,127(14):144507
The microscopic structure of shear-induced gels for a mixed solution of 2-hydroxyethyl cellulose and nanometer-size spherical droplets has been investigated by in situ small-angle neutron scattering (SANS) with a Couette geometry as a function of shear rate gamma. With increasing gamma, the viscosity increased rapidly at gamma approximately 4.0 s(-1), followed by a shear thinning. After cessation of shear, the system exhibited an extraordinarily large steady viscosity. This phenomenon was observed as a shear-induced sol-gel transition. Real-time SANS measurements showed an increase in the scattering intensity exclusively at low scattering angle region. However, neither orientation of polymer chains nor droplet deformation was detected and the SANS patterns remained isotropic irrespective of gamma. It took about a few days for the gel to recover its original sol state. A possible mechanism of gelation is proposed from the viewpoint of shear-induced percolation transition. 相似文献
2.
利用简单的水热法,以Zn(Ac)2.2H2O为锌源,通过调整表面活性剂的种类及碱源,制备了一系列不同形貌的纳米结构氧化锌;利用场发射扫描电子显微镜和X射线粉末衍射仪分析了产物的形貌和晶体结构,并探讨了多种表面活性剂和醋酸钠碱源对氧化锌纳米结构的影响.结果表明,以NaOH作为碱源时,在不添加任何表面活性剂的情况下,产物的形貌结构与氢氧化钠的加入量有关,当n(Zn2+)∶n(OH-)为1∶2.5、1∶10及1∶20时,分别得到片状、棒状及海胆状纳米结构的氧化锌;产物均为六方相氧化锌. 相似文献
3.
Kazuhiko Kandori Kazunao Hayashi Masaki Matsukawa Masao Fukusumi Yoshiaki Morisada 《Colloid and polymer science》2010,288(10-11):1071-1079
The shape and porosity of hematite particles, produced from a forced hydrolysis reaction of acidic FeCl3 solution, were controlled by using Pluronics as nonionic surfactants (0–4 wt.%). Pluronics possess a nominal formula of (PEO) x –(PPO) y –(PEO) x . The effect of Pluronics with low hydrophilicity (PEO contents were less than 50 mol%) was small and provided spherical particles the same as that of the system without Pluronics (control system). However, Pluronics with higher hydrophilicity (PEO contents were over 50 mol%) gave ellipsoidal hematite particles. This effect on the particle morphology was enhanced by an increase in their molecular weight. On the other hand, the Pluronics possessing an opposite nominal formula [(PPO) x –(PEO) y –(PPO) x ] exhibited no effect on the particle shape; it only depressed phase transformation from ?-FeOOH to hematite. Not only the morphology but also the pore size of hematite particles was controlled from nonporous to mesoporous by using Pluronics. The N2 adsorption experiment and t-plot curve analysis revealed that the hematite particles changed from mesoporous to microporous by an increase in the concentration of Pluronics. On the other hand, in the presence of very low amounts of Pluronics molecules (0.1 wt.%), nonporous hematite particles were produced via strong aggregation of PN particles by their hydrogen bonding between hydroxyl and PEO or PPO groups. The dynamic light scattering measurement for the system with Pluronics clarified the existence of polynuclear (PN) particles with a hydrodynamic particle diameter (D a) of ca. 40 nm after these were aged for 6 h. The size of PN particles remained constant at ca. 40 nm during aging time of 12 h~3 days, but the scattering intensity was decreased. This decrease in the scattering intensity reveals that the number of PN particles is reduced by aggregation. The transmission electron microscope, inductively coupled plasma atomic emission spectroscopy, and total organic carbon analysis measurements employed on the systems produced for ellipsoidal particles elucidated that the formation of ellipsoidal hematite particles is attributed to the adsorption of Pluronics on the surfaces of PN and growing hematite particles. 相似文献
4.
5.
Panouillé M Durand D Nicolai T Larquet E Boisset N 《Journal of colloid and interface science》2005,287(1):85-93
Micellar casein particles (submicelles) are formed by removing calcium phosphate from native casein. The submicelles aggregate and eventually form a gel with a rate that increases strongly with increasing temperature and casein concentration. At low casein concentrations the gel is very weak and collapses under its own weight so that a precipitate is formed. The structure of the aggregates is studied using light scattering and cryo-electron microscopy. It is found that the aggregates have a self-similar structure with fractal dimension 2. The viscoelastic properties of the gel are studied by frequency scans of the loss and storage moduli during the gelation process. The bonds between the submicelles probably involve calcium phosphate complexes. 相似文献
6.
Xiong JY Narayanan J Liu XY Chong TK Chen SB Chung TS 《The journal of physical chemistry. B》2005,109(12):5638-5643
Kinetics as well as the evolution of the agarose gel topology is discussed, and the agarose gelation mechanism is identified. Aqueous high melting (HM) agarose solution (0.5% w/v) is used as the model system. It is found that the gelation process can be clearly divided into three stages: induction stage, gelation stage, and pseudoequilibrium stage. The induction stage of the gelation mechanism is identified using an advanced rheological expansion system (ARES, Rheometric Scientific). When a quench rate as large as 30 deg C/min is applied, gelation seems to occur through a nucleation and growth mechanism with a well-defined induction time (time required for the formation of the critical nuclei which enable further growth). The relationship between the induction time and the driving force which is determined by the final setting temperature follows the 3D nucleation model. A schematic representation of the three stages of the gelation mechanism is given based on turbidity and rheological measurements. Aggregation of agarose chains is promoted in the polymer-rich phase and this effect is evident from the increasing mass/length ratio of the fiber bundles upon gelation. Continuously increasing pore size during gelation may be attributed to the coagulation of the local polymer-rich phase in order to achieve the global minimum of the free energy of the gelling system. The gel pore size determined using turbidity measurements has been verified by electrophoretic mobility measurements. 相似文献
7.
Tsutomu Furuya Tsuyoshi Koga Fumihiko Tanaka 《Journal of Polymer Science.Polymer Physics》2004,42(5):733-751
The influence of added surfactants on physical properties of associating polymer solutions was examined by a new statistical‐mechanical theory of associating polymer solutions with multiple junctions and by computer simulation. The sol–gel transition line, the spinodal line, and the number of elastically effective chains in the mixed networks were calculated as functions of the concentration of added surfactants. All of them exhibited nonmonotonic behavior as a result of the following two competing mechanisms. One was the formation of new mixed micelles by binding surfactants onto the polymer associative groups. These micelles serve as crosslink junctions and promote gelation. The other was the replacement of polymer associative groups in the already formed network junctions by added surfactants. Such replacement lowers connectivity of junctions and destroys networks. The critical micelle concentration was also calculated. The results are compared with the reported experimental data on poly(ethylene oxide)‐based associating polymers and hydrophobically modified cellulose derivatives. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 733–751, 2004 相似文献
8.
Effect of charged colloidal particles on adsorption of surfactants at oil-water interface 总被引:1,自引:0,他引:1
Wang W Zhou Z Nandakumar K Xu Z Masliyah JH 《Journal of colloid and interface science》2004,274(2):625-630
A change of oil/water interfacial tension in the presence of cationic or anionic surfactants in an organic phase was observed due to the addition of charged fine solids in the aqueous phase. The charged fine solids in the aqueous phase adsorb surfactants diffused from the oil phase, thereby causing an increase in the bulk equilibrium surfactant concentration in the aqueous phase, governed by the Stern-Grahame equation. Consequently, surfactant adsorption at the oil-water interface increases, which was demonstrated from the measured reduction of the oil-water interfacial tension. The increased surfactant partition in the aqueous phase in the presence of the charged particles was confirmed by the measured decrease in the surface tension for the collected aqueous solution after solids removal, as compared with the cases without solids addition. 相似文献
9.
10.
Miyagishi S Takagi M Kadono S Ohta A Asakawa T 《Journal of colloid and interface science》2003,261(1):191-196
The volume phase transition behavior of a poly(N-isopropylacrylamide) gel (NIPA gel) in solutions of N-acyl amino acid surfactants were studied as a function of surfactant concentration. The addition of a surfactant beyond the critical micelle concentration (cmc) produced elevation in the transition temperature of the NIPA gel and its swelling. The changes in the volume phase transition temperature and in the swelling of the NIPA gel became more significant with the decreasing size of the amino acid side chain. This result could almost be explained only by the binding amount of surfactant onto the NIPA gel regardless of molecular structure of the amino acid. The binding amount increased in the order of sodium N-lauroyl-glycinate>-alaninate>-valinate>-leucinate>or=-phenylalaninate. For an N-acyl amino acid surfactant to bind onto the NIPA gel, to increase the transition temperature, and to facilitate swelling of the gel, the steric hindrance of the amino acid side chain was more effective than its hydrophobicity. 相似文献
11.
Zirconium hydroxide gel has been prepared by a novel aqueous gelation process by the controlled hydrolysis of zirconium oxychloride in the presence of sodium acetate. The gel thus formed has been subjected to thermal analysis: TG, DTG, and DSC. Thermal analysis shows that the gel is continuously dehydrated in the temperature range between room temperature and 500?°C. The total mass loss relative to the initial mass is about 44.1%. Thermal analysis shows that the decomposition takes place in three stages. The gel contains absorbed and coordinated water. In the second stage of dehydration, dehydration of the Zr(OH)4 gel also takes place along with the removal of the coordinated water. The DSC analysis coupled with TG and structural information, indicate that the exothermic processes between 349 and 460?°C can be attributed to the nucleation process of the formation of tetragonal zirconia, with phase transformation at 460?°C. 相似文献
12.
Chia‐Fen Lee 《Journal of polymer science. Part A, Polymer chemistry》2005,43(11):2224-2236
Poly(methyl methacrylate) (PMMA)–polystyrene (PS) composite polymer particles were synthesized in the presence of a surfactant by two‐stage seeded emulsion polymerization. The first stage was the synthesis of PMMA particles by soapless emulsion polymerization; the second stage was the synthesis of the PMMA–PS composite polymer particles with the PMMA particles as seeds. In the second stage of the reaction, three kinds of surfactants—sodium laurate sulfate (SLS), polyoxyethylene (POE) sorbitan monolaurate (Tween 20), and sorbitan monolaurate (Span 20)—were used to synthesize the PMMA–PS composite particles. Both the properties and concentrations of the surfactants influenced the morphology of the composite particles significantly. Core–shell composite particles, with PS as the shell and PMMA as the core, were synthesized in the presence of a low concentration of the hydrophilic surfactant SLS. This result was the same as that in the absence of the surfactant. However, a low concentration of Tween 20 led to composite particles with a core/strawberry‐like shell morphology; the core region was a PS phase, and the strawberry‐like shell was a PS phase dispersed in a PMMA phase. With an increase in the concentration of SLS, the morphology of the composite particles changed from core (PMMA)–shell (PS) to core (PS)–shell (PMMA). Moreover, the effects of a high concentration of Tween 20 or Span 20 on the morphology of the PMMA–PS composite particles were investigated in this study. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2224–2236, 2005 相似文献
13.
Molecular self-assembly is an intrinsic property of proteins central to their biological functionality. One important industrially interesting property is the ability to control and switch on and off self-assembly using a variety of external chemical and physical triggers. Model peptides have been developed with significantly reduced chemical and structural complexity compared to biological proteins. These are ideal systems for exposing the fundamental principles that drive protein-like self-assembly, as well as for establishing in a quantitative manner their structure-function relationship. We investigate simple, short model peptides that adopt a purely β-strand conformation, align in an antiparallel manner and self-assemble in one dimension in solution into long β-sheet nanotapes and higher order aggregates with no other conformation (i.e., helices, turns or random coils) present in the aggregates. These micrometre-long nanostructures gel in solutions at concentrations as low as 0.2% v/v. Their gel-fluid transition has been previously shown to be controlled by pH, temperature, or by mixing with complementary peptides. Here we show the dramatic effect of another chemical trigger, that of physiological-like salt concentration, on the self-assembly, morphology and gelation of a series of systematically designed charged self-assembling tape-forming peptides, each 11 amino acid residues in length, in the pH range of 2-14. This study provides a detailed understanding of the self-assembly of this class of peptides in aqueous solutions of biologically relevant pH and ionic strength. This insight has led to the development of injectable self-assembling peptide lubricants as potential therapeutics for the treatment of early stage knee joint osteoarthritis. 相似文献
14.
Yang BS Russel WB Prud'homme RK 《Langmuir : the ACS journal of surfaces and colloids》2005,21(22):10038-10045
The effects of polymer concentration, polymer molecular weight, and hydrophobe substitution level of modified poly(acrylic acid) polymers on the formation, size, and viscoelastic properties of shear-induced multilamellar vesicles (onions) are studied by rheology and light diffraction. The onions are close-packed, space-filling vesicles formed by shearing aqueous lamellar phases of C12E5 surfactant to produce phases with sufficient order and size uniformity (O(1-3 microm)) to diffract light. The addition of hydrophobically modified polymers enhances the rate of formation, uniformity, and stability independent of hydrophobe substitution level. Onion size decreases with increasing shear rate as observed for pure surfactant onion systems, but the shear-rate dependence is changed by the polymer. The onion phase has a plateau modulus that increases with polymer concentration but is independent of hydrophobe substitution level or molecular weight. The model presented by Panizza et al. that relates the plateau modulus of the onion phase to membrane rigidity and the compression modulus is consistent with independent measurements of membrane properties from SANS. 相似文献
15.
O. N. Gavrilenko E. V. Pashkova A. G. Belous 《Russian Journal of Inorganic Chemistry》2007,52(12):1835-1839
The effect of precursors on the microstructure of nanocrystalline tin dioxide is studied by thermal analysis, IR spectroscopy, electron microscopy, and X-ray powder diffraction. The precursor precipitated in an optimal pH range whose dehydration and crystallization occur over a wide temperature range with low degrees of oxolation yields crystalline tin dioxide with grain sizes on the order of 16 nm upon calcination at 800°C for 2 h. 相似文献
16.
Hiroyuki Ohshima 《Colloid and polymer science》2007,285(13):1411-1421
Theories of electrokinetics of soft particles, which are particles covered with an ion-penetrable surface layer of polyelectrolytes,
are reviewed. Approximate analytic expressions are given, which describe various electrokinetics of soft particles both in
dilute and concentrated suspensions, that is, electrophoretic mobility, electrical conductivity, sedimentation velocity and
potential, dynamic electrophoretic mobility, colloid vibration potential, and electrophoretic mobility under salt-free condition. 相似文献
17.
18.
Adsorption and heterocoagulation of nonionic surfactants and latex particles on cement hydrates 总被引:1,自引:0,他引:1
Merlin F Guitouni H Mouhoubi H Mariot S Vallée F Van Damme H 《Journal of colloid and interface science》2005,281(1):1-10
The adsorption of nonionic surfactants of the alkyl-phenol-poly(ethylene oxide) family and of acrylic latex particles on several anhydrous (but hydrating) or fully hydrated mineral phases of Portland cement was studied. No or negligible adsorption of the surfactant was observed. This was assigned to the ionized character of the surface silanol groups in calcium-silicate-hydrates and to the strongly ionic character of the OH groups in calcium hydroxide and in the calcium-sulfoaluminate-hydrates, which prevents the formation of surface-ethoxy hydrogen bonds. In contrast, provided they are properly stabilized by the surfactant, the latex particles form a loose monolayer on the surface of hydrating tricalcium silicate particles. The attractive interaction between the positive mineral surface and the negative latex surface appears to be the driving force for adsorption. In line with this, adsorption is reduced by sulfate anions, which adsorb specifically onto the silicate surface. Compared to tricalcium silicate, portlandite and gypsum interact only marginally with the latex particles. Our results show that the stability of the nonionic surfactant/latex/cement systems is essentially controlled by the latex colloidal stability and the latex-cement interactions, the surfactant having little direct interaction, if any, with the mineral surfaces. 相似文献
19.
Peng Lin Nan-Xiang Zhang Jing-Jing Li Jing Zhang Jia-Hui Liu Bao Zhang Jian Song 《中国化学快报》2017,28(4):771-776
The gelation behaviours of low molecular weight gelators 1,3:2,5:4,6-tris(3,4-dichlorobenzylidene)-D-mannitol(G1)and 2,4-(3,4-dichlorobenzylidene)-N-(3-aminopropyl)-D-gluconamide(G2)in 34 solvents have been studied.We found that sample dissolved at low concentrations may become a gel or precipitate at higher concentrations.The Hansen solubility parameters(HSPs)and a Teas plot were employed to correlate the gelation behaviours with solvent properties,but with no success if the concentration of the tests was not maintained constant.Instead,on the basis of the gelation results obtained for the G1 and G2 in single solvents,we studied the gelation behaviours of G1 and G2 in 23 solvent mixtures and found that the tendency of a gelator to form a gel in mixed solvents is strongly correlated with its gelation behaviours in good solvents.If the gelation occurs in a good solvent at higher concentrations,it will take place as well in a mixed solvent(the good solvent plus a poor solvent)at a certain volume ratio.In contrast,if the gelator forms a precipitate in a good solvent at higher concentrations,no gelation is to be observed in the mixed solvents.A gelation rule for mixed solvents is thus proposed,which may facilitate decision making with regard to solvent selection for gel formation in the solvent mixtures in practical applications. 相似文献
20.
Polyampholyte microgel particles, containing both methacrylic acid and 2-(dimethylamino) ethyl methacrylate (a weak base),
in a mainly N-isopropyl acrylamide network, have been prepared by free-radical dispersion polymerisation. The swelling properties of the
particles have been shown to be pH and temperature dependent and to exhibit a minimum in size at the iso-electric point. The
uptake and release of cetylpyridinium chloride and Triton X-100, into and from, the polyampholyte microgel particles have
been investigated as a function of pH. The absorbed amounts at different pH values have been related to various specific interactions
between the surfactant and the microgel network. 相似文献