首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein ion-channel recordings using a glass nanopore (GNP) membrane as the support structure for lipid bilayer membranes are presented. The GNP membrane is composed of a single conical-shaped nanopore embedded in a approximately 50 microm-thick glass membrane chemically modified with a 3-cyanopropyldimethylchlorosilane monolayer to produce a surface of intermediate hydrophobicity. This surface modification results in lipid monolayer formation on the glass surface and a lipid bilayer suspended across the small orifice (100-400 nm-radius) of the GNP membrane, while allowing aqueous solutions to fully wet the glass nanopore. The GNP membrane/bilayer structures, which exhibit ohmic seal resistances of approximately 70 GOmega and electrical breakdown voltages of approximately 0.8 V, are exceptionally stable to mechanical disturbances and have lifetimes of at least 2 weeks. These favorable characteristics result from the very small area of bilayer (10(-10)-10(-8) cm(2)) that is suspended across the GNP membrane orifice. Fluorescence microscopy and vibrational sum frequency spectroscopy demonstrate that a lipid monolayer forms on the 3-cyanopropyl-dimethylchlorosilane modified glass surface with the lipid tails oriented toward the glass. The GNP membrane/bilayer structure is well suited for single ion-channel recordings. Reproducible insertion of the protein ion channel, wild-type alpha-hemolysin (WTalphaHL), and stochastic detection of a small molecule, heptakis(6-O-sulfo)-beta-cyclodextrin, are demonstrated. In addition, the insertion and removal of WTalphaHL channels are reproducibly controlled by applying small pressures (-100 to 350 mmHg) across the lipid bilayer. The electrical and mechanical stability of the bilayer, the ease of which bilayer formation is achieved, and the ability to control ion-channel insertion, coupled with the small bilayer capacitance of the GNP membrane-based system, provide a new and nearly optimal system for single ion-channel recordings.  相似文献   

2.
This article describes the fluorescence microscopy and imaging ellipsometry-based characterization of supported phospholipid bilayer formation on elastomeric substrates and its application in microcontact printing of spatially patterned phospholipid bilayers. Elastomeric stamps, displaying a uniformly spaced array of square wells (20, 50, and 100 mum linear dimensions), are prepared using poly(dimethyl)siloxane from photolithographically derived silicon masters. Exposing elastomeric stamps, following UV/ozone-induced oxidation, to a solution of small unilamellar phospholipid vesicles results in the formation of a 2D contiguous, fluid phospholipid bilayers. The bilayer covers both the elevated and depressed regions of the stamp and exhibits a lateral connectivity allowing molecular transport across the topographic boundaries. Applications of these bilayer-coated elastomeric stamps in microcontact printing of lipid bilayers reveal a fluid-tearing process wherein the bilayer in contact regions selectively transfers with 75-90% efficiency, leaving behind unperturbed patches in the depressed regions of the stamp. Next, using cholera-toxin binding fluid POPC bilayers that have been asymmetrically doped with ganglioside Gm1 ligand in the outer leaflets, we examine whether the microcontact transfer of bilayers results in the inversion of the lipid leaflets. Our results suggest a complex transfer process involving at least partial bilayer reorganization and molecular re-equilibration during (or upon) substrate transfer. Taken together, the study sheds light on the structuring of lipid inks on PDMS elastomers and provides clues regarding the mechanism of bilayer transfer. It further highlights some important differences in stamping fluid bilayers from the more routine applications of stamping in the creation of patterned self-assembled monolayers.  相似文献   

3.
Free-standing lipid bilayers are formed in regularly arranged nanopores of 200, 400 and 800 nm in a 300 nm thin hydrophobic silicon nitride membrane separating two fluid compartments. The extraordinary stability of the lipid bilayers allows us to monitor channel formation of the model peptide melittin and α-hemolysin from Staphylococcus aureus using electrochemical impedance spectroscopy and chronoamperometry. We observed that melittin channel formation is voltage-dependent and transient, whereas transmembrane heptameric α-hemolysin channels in nano-BLMs persist for hours. The onset of α-hemolysin-mediated conduction depends on the applied protein concentration and strongly on the diameter of the nanopores. Heptameric channel formation from adsorbed α-hemolysin monomers needs more time in bilayers suspended in 200 nm pores compared to bilayers in pores of 400 and 800 nm diameters. Diffusion of sodium ions across α-hemolysin channels present in a sufficiently high number in the bilayers was quantitatively and specifically determined using ion selective electrodes. The results demonstrate that relatively small variations of nano-dimensions have a tremendous effect on observable dynamic biomolecular processes. Such nanopore chips are potentially useful as supports for stable lipid bilayers to establish functional assays of membrane proteins needed in basic research and drug discovery.  相似文献   

4.
Ion channels play crucial roles in transport and regulatory functions of living cells. Understanding the gating mechanisms of these channels is important to understanding and treating diseases that have been linked to ion channels. One potential model peptide for studying the mechanism of ion channel gating is alamethicin, which adopts a split α/3(10)-helix structure and responds to changes in electric potential. In this study, sum frequency generation vibrational spectroscopy (SFG-VS), supplemented by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), has been applied to characterize interactions between alamethicin (a model for larger channel proteins) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayers in the presence of an electric potential across the membrane. The membrane potential difference was controlled by changing the pH of the solution in contact with the bilayer and was measured using fluorescence spectroscopy. The orientation angle of alamethicin in POPC lipid bilayers was then determined at different pH values using polarized SFG amide I spectra. Assuming that all molecules adopt the same orientation (a δ distribution), at pH = 6.7 the α-helix at the N-terminus and the 3(10)-helix at the C-terminus tilt at about 72° (θ(1)) and 50° (θ(2)) versus the surface normal, respectively. When pH increases to 11.9, θ(1) and θ(2) decrease to 56.5° and 45°, respectively. The δ distribution assumption was verified using a combination of SFG and ATR-FTIR measurements, which showed a quite narrow distribution in the angle of θ(1) for both pH conditions. This indicates that all alamethicin molecules at the surface adopt a nearly identical orientation in POPC lipid bilayers. The localized pH change in proximity to the bilayer modulates the membrane potential and thus induces a decrease in both the tilt and the bend angles of the two helices in alamethicin. This is the first reported application of SFG to the study of model ion channel gating mechanisms in model cell membranes.  相似文献   

5.
Bicellar mixtures, planar lipid bilayer assemblies comprising long- and short-chain phosphatidylcholine lipids in suspension, were used to form supported lipid bilayers on flat silicon substrate and on nanotextured silicon substrates containing arrays of parallel troughs (170 nm wide, 380 nm deep, and 300 nm apart). Confocal fluorescence and atomic force microscopies were used to characterize the resulting lipid bilayer. Formation of a continuous biphasic undulating lipid bilayer membrane, where the crests and troughs corresponded to supported and suspended lipid bilayer regions, is demonstrated. The use of interferometric lithography to fabricate nanotexured substrates provides an advantage over other nanotextured substrates such as nanoporous alumina by offering flexibility in designing different geometries for suspending lipid bilayers.  相似文献   

6.
We developed a highly reproducible method for planar lipid bilayer reconstitution using a microfluidic system made of a polymethyl methacrylate (PMMA) plastic substrate. Planar lipid bilayers are formed at apertures, 100 microm in diameter, by flowing lipid solution and buffer alternately into an integrated microfluidic channel. Since the amount and distribution of the lipid solution at the aperture determines the state of the lipid bilayer, controlling them precisely is crucial. We designed the geometry of the fluidic system so that a constant amount of lipid solution is distributed at the aperture. Then, the layer of lipid solution was thinned by applying an external pressure and finally became a bilayer when a pressure of 200-400 Pa was applied. The formation process can be simultaneously monitored with optical and electrical recordings. The maximum yield for bilayer formation was 90%. Using this technique, four lipid bilayers are formed simultaneously in a single chip. Finally, a channel current through gramicidin peptide ion channels was recorded to prove the compatibility of the chip with single molecule electrophysiology.  相似文献   

7.
The stabilization of suspended planar lipid membranes, or black lipid membranes (BLMs), through polymerization of mono- and bis-functionalized dienoyl lipids was investigated. Electrical properties, including capacitance, conductance, and dielectric breakdown voltage, were determined for BLMs composed of mono-DenPC, bis-DenPC, mono-SorbPC, and bis-SorbPC both prior to and following photopolymerization, with diphytanoyl phosphocholine (DPhPC) serving as a control. Poly(lipid) BLMs exhibited significantly longer lifetimes and increased the stability of air-water transfers. BLM stability followed the order bis-DenPC > mono-DenPC ≈ mono-SorbPC > bis-SorbPC. The conductance of bis-SorbPC BLMs was significantly higher than that of the other lipids, which is attributed to a high density of hydrophilic pores, resulting in relatively unstable membranes. The use of poly(lipid) BLMs as matrices for supporting the activity of an ion channel protein (IC) was explored using α-hemolysin (α-HL), a model IC. Characteristic i-V plots of α-HL were maintained following photopolymerization of bis-DenPC, mono-DenPC, and mono-SorbPC, demonstrating the utility of these materials for preparing more durable BLMs for single-channel recordings of reconstituted ICs.  相似文献   

8.
Phase behavior of lipid bilayers at high pressure is critical to biological processes. Using coarse grained molecular dynamic simulations, we report critical characteristics of dipalmitoylphosphatidylcholine bilayers with applied high pressure, and also show their phase transition by cooling bilayer patches. Our results indicate that the phase transition temperature of dipalmitoylphosphatidylcholine bilayers obviously shifts with pressure increasing in the rate of 37 °C kbar(-1), which are in agreement with experimental data. Moreover, the main phase transition is revealed to be strongly dependent on lipid area. A critical lipid area of ~0.57 nm(2) is found on the main phase transition boundary. Similar structures of acyl chains lead to the same sensitivity of phase transition temperature of different lipids to the pressure. Based on the lateral density and pressure profiles, we also discuss the different effects on bilayer structure induced by high temperature and high pressure, e.g., increasing temperature induces higher degree of interdigitation of lipid tails and thinner bilayers, and increasing pressure maintains the degree of interdigitation and bilayer thickness.  相似文献   

9.
The physical properties of lipid bilayers can be remodeled by a variety of environmental factors. Here we investigate using molecular dynamics simulations the specific effects of nanoscopic substrates or external contact points on lipid membranes. We expose palmitoyl-oleoyl phosphatidylcholine bilayers unilaterally and separately to various model nanosized substrates differing in surface hydroxyl densities. We find that a surface hydroxyl density as low as 10% is sufficient to keep the bilayer juxtaposed to the substrate. The bilayer interacts with the substrate indirectly through multiple layers of water molecules; however, despite such buffered interaction, the bilayers exhibit certain properties different from unsupported bilayers. The substrates modify transverse lipid fluctuations, charge density profiles, and lipid diffusion rates, although differently in the two leaflets, which creates an asymmetry between bilayer leaflets. Other properties that include lipid cross-sectional areas, component volumes, and order parameters are minimally affected. The extent of asymmetry that we observe between bilayer leaflets is well beyond what has been reported for bilayers adsorbed on infinite solid supports. This is perhaps because the bilayers are much closer to our nanosized finite supports than to infinite solid supports, resulting in a stronger support-bilayer electrostatic coupling. The exposure of membranes to nanoscopic contact points, therefore, cannot be considered as a simple linear interpolation between unsupported membranes and membranes supported on infinite supports. In the biological context, this suggests that the exposure of membranes to nonintercalating proteins, such as those belonging to the cytoskeleton, should not always be considered as passive nonconsequential interactions.  相似文献   

10.
Micropatterned composite membranes of polymerized and fluid lipid bilayers were constructed on solid substrates. Lithographic photopolymerization of a diacetylene-containing phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC), and subsequent removal of nonreacted monomers by a detergent solution (0.1 M sodium dodecyl sulfate (SDS)) yielded a patterned polymeric bilayer matrix on the substrate. Fluid lipid bilayers of phosphatidylcholine from egg yolk (egg-PC) were incorporated into the lipid-free wells surrounded by the polymeric bilayers through the process of fusion and reorganization of suspended small unilamellar vesicles. Spatial distribution of the fluid bilayers in the patterned bilayer depended on the degree of photopolymerization that in turn could be modulated by varying the applied UV irradiation dose. The polymeric bilayer domains blocked lateral diffusion of the fluid lipid bilayers and confined them in the defined areas (corrals), if the polymerization was conducted with a sufficiently large UV dose. On the other hand, lipid molecules of the fluid bilayers penetrated into the polymeric bilayer domains, if the UV dose was relatively small. A direct correlation was observed between the applied UV dose and the lateral diffusion coefficient of fluorescent marker molecules in the fluid bilayers embedded within the polymeric bilayer domains. Artificial control of lateral diffusion by polymeric bilayers may lead to the creation of complex and versatile biomimetic model membrane arrays.  相似文献   

11.
The structure of a planar supported lipid bilayer (PSLB) prepared by the Langmuir-Blodgett (LB)/Langmuir-Schaefer (LS) method was investigated by sum-frequency vibrational spectroscopy (SFVS). By using asymmetric lipid bilayers composed of selectively deuterated 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) lipids, the orientation of the fatty acid chains and phosphocholine headgroups has been determined independently for both leaflets of the bilayer. The alkyl chains of the lipids were found to be orientated approximately 13 degrees +/- 4 degrees from the surface normal for both leaflets. The lipid chains in both leaflets also contain some gauche content, which is consistent with previous NMR and FTIR studies of similar lipid systems. More importantly, the relative number of gauche defects does not seem to be influenced by the deposition method, LB versus LS. The headgroup orientation for the lipid film in contact with the silica support was determined to be 69 degrees +/- 3 degrees , whereas that in contact with the aqueous phase was 66 degrees +/- 4 degrees from the surface normal. The SFVS results indicate that the structure of the DSPC lipid film in contact with the solid support and the film adjacent to the aqueous phase are nearly identical in structure. These results suggesting the LB/LS deposition method do indeed produce symmetric lipid bilayers. These studies further add to the growing information on the efficacy of PSLBs as suitable models for biological membrane studies.  相似文献   

12.
The study and the exploitation of membrane proteins for drug screening applications requires a controllable and reliable method for their delivery into an artificial suspended membrane platform based on lab-on-a-chip technology. In this work, a polymeric device for forming lipid bilayers suitable for electrophysiology studies and biosensor applications is presented. The chip supports a single bilayer and is configured for controlled protein delivery through on-chip microfluidics. In order to demonstrate the principle of protein delivery, the potassium channel KcsA was reconstituted into proteoliposomes, which were then fused with the suspended bilayer on-chip. Fusion of single proteoliposomes with the membrane was identified electrically. Single channel conductance measurements of KcsA in the on-chip bilayer were recorded and these were compared to previously published data obtained with a conventional planar bilayer system.  相似文献   

13.
Nanopores based on α-hemolysin and MspA represent attractive sensing platforms due to easy production and operation with relatively low background noise. Such characteristics make them highly favorable for sequencing nucleic acids. Artificial lipid bilayer membranes, also referred to as black lipid membranes, in conjunction with membrane nanopores, can be applied to both the detection and highly efficient sequencing of DNA on a single-molecule level. However, the inherently weak physical properties of the membrane have impeded progress in these areas. Current issues impeding the ultimate recognition of the artificial lipid bilayer as a viable platform for detection and sequencing of DNA include membrane stability, lifespan, and automation. This review (with 105 references) highlights attempts to improve the attributes of the artificial lipid bilayer membrane starting with an overview on the present state and limitations. The first main section covers lipid bilayer membranes (BLM) in general. The following section reviews the various kinds of lipid bilayer membrane platforms with subsections on polymer membranes, solid-supported membranes, hydrogel-encapsulated membranes, shippable and storable membrane platforms, and droplet interface bilayers. A further section covers engineered biological nanopore sensor applications using BLMs with subsections offering a comparative view of different DNA sequencing methods, a detailed look at DNA Sequencing by synthesis using alpha-hemolysin nanopores, sequencing by synthesis using the MspA nanopore and quadromer map, and on limitations of sequencing based on synthesis technology. We present an outlook at the end that discusses current research trends on single-molecule sequencing to highlight the significance of this technology and its potential in the medical and environmental fields.
Graphical abstract Sequencing by Synthesis, a novel method of sequencing DNA, uses the αHL biological nanopore and the artificial lipid bilayer membrane platform. Polymer tags attached to nucleotides bind to the polymerase-primer–template complex and are characterized by the nanopore upon release.
  相似文献   

14.
We formed monolayers and black lipid membranes (BLMs) of photopolymerizable lipids mixed with the channel-forming protein gramicidin A to evaluate their miscibility and the potential for improved stability of the BLM scaffold through polymerization. Analyses of surface pressure vs area isotherms indicated that gramicidin A dispersed with three different synthetic, polymerizable, diacetylene-containing phospholipids, 1,2-di-10,12-tricosadiynoyl-sn-glycero-3-phosphocholine (DTPC), 1,2-di-10,12-tricosadiynoyl-sn-glycero-3-phosphoethanolamine (DTPE), and 1-palmitoyl-2,10,12-tricosadiynoyl-sn-glycero-3-phosphoethanolamine (PTPE) to form mixed monolayers at the air-water interface on a Langmuir-Blodgett (LB) trough. Conductance measurements across a diacetylenic lipid-containing BLM confirmed dispersion of the gramicidin channel with the lipid layer and demonstrated gramicidin ion-channel activity before and after UV exposure. Polymerization kinetics of the diacetylenic films were monitored by film pressure changes at constant LB trough area and by UV-vis absorption spectroscopy of polymerized monolayers deposited onto quartz. An initial increase in film pressure of both the pure diacetylene lipid monolayers and mixed films upon exposure to UV light indicated a change in the film structure. Over the time scale of the pressure increase, an absorbance peak indicative of polymerization evolved, suggesting that the structural change in the lipid monolayer was due to polymerization. Film pressure and absorbance kinetics also revealed degradation of the polymerized chains at long exposure times, indicating an optimum time of UV irradiation for maximized polymerization in the lipid layer. Accordingly, exposure of polymerizable lipid-containing black lipid membranes to short increments of UV light led to an increase in the bilayer lifetime.  相似文献   

15.
α-生育酚在模型生物膜中的分子动力学模拟   总被引:1,自引:0,他引:1  
用分子动力学方法模拟了280, 310和350 K下α-生育酚在二豆蔻酰磷脂酰胆碱、二豆蔻酰磷脂酰乙醇胺、二硬脂酰磷脂酰胆碱和二硬脂酰磷脂酰乙醇胺双层膜中的性质, 包括了空间位置、氢键、取向和动力学性质, 取得了如下的结论. 第一, 生育酚头部的羟基一般位于脂双层亲疏水界面的下方, 升高温度将促进羟基向膜双层的中心移动, 在350 K时观察到了在上下两个单层间的翻转. 第二, 生育酚主要与磷脂的酯基形成氢键, 几乎不与磷脂酰乙醇胺的氨基形成氢键; 比较生育酚与磷脂酰胆碱和乙醇胺形成的氢键后发现, 后者更稳定. 第三, 生育酚的头部在膜中取向多变, 与膜的法线夹角不固定, 尾部的构象也很复杂. 第四, 在温度较低时, 生育酚的侧向扩散系数与磷脂的相当, 但在350 K时其扩散速度明显加快; 在垂直方向生育酚的扩散速度很慢.  相似文献   

16.
The study of lipid structure and phase behavior at the nanoscale is of utmost importance due to implications in understanding the role of the lipids in biochemical membrane processes. Supported lipid bilayers play a key role in understanding real biological systems, but they are vastly underrepresented in computational studies. In this paper, we discuss molecular dynamics simulations of supported lipid bilayers using a coarse-grained model. We first focus on the technical implications of modeling solid supports for biomembrane simulations. We then describe noticeable influences of the support on the systems. We are able to demonstrate that the bilayer system behavior changes when supported by a hydrophilic surface. We find that the thickness of the water layer between the support and the bilayer (the inner-water region in the latter part of this paper) adapts through water permeation on the microsecond time scale. Additionally, we discuss how different surface topologies affect the bilayer. Finally, we point out the differences between the two leaflets induced by the support.  相似文献   

17.
In order to investigate experimentally inaccessible, molecular-level detail regarding interleaflet interaction in membranes, we have run an extensive series of coarse-grained molecular dynamics simulations of phase separated lipid bilayers. The simulations are motivated by differences in lipid and cholesterol composition in the inner and outer leaflets of biological membranes. Over the past several years, this phenomenon has inspired a series of experiments in model membrane systems which have explored the effects of lipid compositional asymmetry in the two leaflets. The simulations are directed at understanding one potential consequence of compositional asymmetry, that being regions of bilayers where liquid-ordered (L(o)) domains in one leaflet are opposite liquid-disordered (L(d)) domains in the other leaflet (phase asymmetry). The simulated bilayers are of two sorts: 1) Compositionally symmetric leaflets where each of the two leaflets contains an identical, phase separated (L(o)/L(d)) mixture of cholesterol, saturated and unsaturated phospholipid; and 2) Compositionally asymmetric leaflets, where one leaflet contains a phase separated (L(o)/L(d)) mixture while the other contains only unsaturated lipid, which on its own would be in the L(d) phase. In addition, we have run simulations where the lengths of the saturated lipid chains as well as the mole ratios of the three lipid components are varied. Collectively, we report on three types of interleaflet coupling within a bilayer. First, we show the effects of compositional asymmetry on acyl chain tilt and order, lipid rotational dynamics, and lateral diffusion in regions of leaflets that are opposite L(o) domains. Second, we show substantial effects of compositional asymmetry on local bilayer curvature, with the conclusion that phase separated leaflets resist curvature, while inducing large degrees of curvature in an opposing L(d) leaflet. Finally, in compositionally symmetric, phase separated bilayers, we find phase asymmetry (domain antiregistration) between the two leaflets occurs as a consequence of mismatched acyl chain-lengths in the saturated and unsaturated lipids.  相似文献   

18.
We report the fabrication of a thin silicon membrane with an array of micrometer and submicrometer pores that acts as a scaffold for suspending a lipid bilayer. We successfully deposited a lipid bilayer by the Langmuir-Blodgett method on a synthetic silicon membrane bearing arrays of pores with sizes of 1000, 650, and 300 nm. Topographic images obtained by AFM showed a suspended lipid film spanning the pores, whatever the pore size. Higher stability of bilayers supported on smaller pores was shown by AFM characterization. These results represent an important first step to creating a biomimetic environment to study cell membrane dynamics and/or in developing a biosensor.  相似文献   

19.
We study the insertion and behavior of modified amphiphilic cyclodextrins in suspended bilayer lipid membranes by electrophysiological methods. We observe that our molecules build single well-defined ionic channels. The pore conductance is measured in two lipid membranes differing by their composition. These measurements reveal two distinct behaviors. In the case of thin membranes, we observe single channels, whereas in the case of thick membranes, we only detect a large number of aggregated channels. In a few experiments, we have been able to monitor the transition between the two behaviors by modifying slightly the swelling of the lipid bilayers by decane. The precise structure of the channels is yet unknown; however, we deduce from our measurements an estimation of the channel diameter.  相似文献   

20.
We describe a silicon chip-based supported bilayer system to detect the presence of ion channels and their electrical conductance in lipid bilayers. Nanopores were produced in microfabricated silicon membranes by electron beam lithography as well as by using a finely focused ion beam. Thermal oxide was used to shrink pore sizes, if necessary, and to create an insulating surface. The chips with well-defined pores were easily mounted on a double-chamber plastic cell recording system, allowing for controlling the buffer conditions both above and below the window. The double-chamber system allowed using an atomic force microscopy (AFM) tip as one electrode and inserting a platinum wire as the second electrode under the membrane window, to measure electrical current across lipid bilayers that are suspended over the pores. Atomic force imaging, stiffness measurement, and electrical capacitance measurement show the feasibility of supporting lipid bilayers over defined nanopores: a key requirement to use any such technique for structure-function study of ion channels. Online addition of gramicidin, an ion-channel-forming peptide, resulted in electrical current flow across the bilayer, and the I-V curve that was measured using the conducting AFM tip indicates the presence of many conducting gramicidin ion channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号