首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Free-standing lipid bilayers are formed in regularly arranged nanopores of 200, 400 and 800 nm in a 300 nm thin hydrophobic silicon nitride membrane separating two fluid compartments. The extraordinary stability of the lipid bilayers allows us to monitor channel formation of the model peptide melittin and α-hemolysin from Staphylococcus aureus using electrochemical impedance spectroscopy and chronoamperometry. We observed that melittin channel formation is voltage-dependent and transient, whereas transmembrane heptameric α-hemolysin channels in nano-BLMs persist for hours. The onset of α-hemolysin-mediated conduction depends on the applied protein concentration and strongly on the diameter of the nanopores. Heptameric channel formation from adsorbed α-hemolysin monomers needs more time in bilayers suspended in 200 nm pores compared to bilayers in pores of 400 and 800 nm diameters. Diffusion of sodium ions across α-hemolysin channels present in a sufficiently high number in the bilayers was quantitatively and specifically determined using ion selective electrodes. The results demonstrate that relatively small variations of nano-dimensions have a tremendous effect on observable dynamic biomolecular processes. Such nanopore chips are potentially useful as supports for stable lipid bilayers to establish functional assays of membrane proteins needed in basic research and drug discovery.  相似文献   

2.
We demonstrate for the first time the formation of a fluid lipid bilayer membrane on mesoporous silicon substrates for bioapplications. Using fluorescence recovery after photobleaching, the diffusion coefficients for the bilayers supported on oxidized, amino-, and biotin-functionalized mesoporous silicon were determined. The biodetection of a single human umbilical vein endothelial cell was accomplished using confocal microscopy and exploiting Foerster resonance energy transfer effects after the incorporation of RGD covalently linked lipid soluble dyes, with fluorescence donor and acceptor components, within the fluid membrane. A signal response of greater than 100% was achieved via the clustering of RGD peptides binding with areas of high integrin density on the surface of a single cell. These results are a testament to the usefulness of such functional molecular assemblies, based on mobile receptors, mimicking the cell membrane in the development of a new generation of biosensors.  相似文献   

3.
A synthetic transmembrane receptor that is capable of transmitting binding information across a lipid bilayer membrane is reported. The binding event is based on aggregation of the receptor triggered by copper(II) complexation to ethylenediamine functionalities. By labelling the receptor with fluorescent dansyl groups, the copper(II) binding event could be monitored by measuring the extent of fluorescence quenching. Comparing the receptor with a control receptor lacking the transmembrane linkage revealed that the transmembrane receptor binds copper(II) ions more tightly than the non-spanning control receptor at low copper(II) concentrations. Since the intrinsic binding to copper(II) is the same for both receptors, this effect was attributed to synergy between the connected interior and exterior binding sides of the transmembrane receptor. Thus, this is the first reported artificial signalling event in which binding of a messenger on one side of the membrane leads to a cooperative binding event on the opposite side of the membrane, resembling biological signalling systems and helping us to get a better understanding of the requirements for more effective artificial signalling systems.  相似文献   

4.
Memristive and memcapacitive behaviors are observed from ion transport through single conical nanopores in SiO(2) substrate. In i-V measurements, current is found to depend on not just the applied bias potential but also previous conditions in the transport-limiting region inside the nanopore (history-dependent, or memory effect). At different scan rates, a constant cross-point potential separates normal and negative hysteresis loops at low and high conductivity states, respectively. Memory effects are attributed to the finite mobility of ions as they redistribute within the negatively charged nanopore under applied potentials. A quantative correlation between the cross-point potential and electrolyte concentration is established.  相似文献   

5.
Lipid bilayers were deposited inside the 0.2 microm pores of anodic aluminum oxide (AAO) filters by extrusion of multilamellar liposomes and their properties studied by 2H, 31P, and 1H solid-state NMR. Only the first bilayer adhered strongly to the inner surface of the pores. Additional layers were washed out easily by a flow of water as demonstrated by 1H magic angle spinning NMR experiments with addition of Pr3+ ions to shift accessible lipid headgroup resonances. A 13 mm diameter Anopore filter of 60 microm thickness oriented approximately 2.5 x 10(-7) mol of lipid as a single bilayer, corresponding to a total membrane area of about 500 cm2. The 2H NMR spectra of chain deuterated POPC are consistent with adsorption of wavy, tubular bilayers to the inner pore surface. By NMR diffusion experiments, we determined the average length of those lipid tubules to be approximately 0.4 microm. There is evidence for a thick water layer between lipid tubules and the pore surface. The ends of tubules are well sealed against the pore such that Pr3+ ions cannot penetrate into the water underneath the bilayers. We successfully trapped poly(ethylene glycol) (PEG) with a molecular weight of 8000 in this water layer. From the quantity of trapped PEG, we calculated an average water layer thickness of 3 nm. Lipid order parameters and motional properties are unperturbed by the solid support, in agreement with existence of a water layer. Such unperturbed, solid supported membranes are ideal for incorporation of membrane-spanning proteins with large intra- and extracellular domains. The experiments suggest the promise of such porous filters as membrane support in biosensors.  相似文献   

6.
We describe a silicon chip-based supported bilayer system to detect the presence of ion channels and their electrical conductance in lipid bilayers. Nanopores were produced in microfabricated silicon membranes by electron beam lithography as well as by using a finely focused ion beam. Thermal oxide was used to shrink pore sizes, if necessary, and to create an insulating surface. The chips with well-defined pores were easily mounted on a double-chamber plastic cell recording system, allowing for controlling the buffer conditions both above and below the window. The double-chamber system allowed using an atomic force microscopy (AFM) tip as one electrode and inserting a platinum wire as the second electrode under the membrane window, to measure electrical current across lipid bilayers that are suspended over the pores. Atomic force imaging, stiffness measurement, and electrical capacitance measurement show the feasibility of supporting lipid bilayers over defined nanopores: a key requirement to use any such technique for structure-function study of ion channels. Online addition of gramicidin, an ion-channel-forming peptide, resulted in electrical current flow across the bilayer, and the I-V curve that was measured using the conducting AFM tip indicates the presence of many conducting gramicidin ion channels.  相似文献   

7.
We use infrared near-field microscopy to chemically map the morphology of biological matrices. The investigated sample is built up from surface-tethered membrane proteins (cytochrome c oxidase) reconstituted in a lipid bilayer. We have carried out infrared near-field measurements in the frequency range between 1600 and 1800 cm(-1). By simultaneously recording the topography and chemical fingerprint of the protein-tethered lipid bilayer with a lateral resolution of 80 nm × 80 nm, we were able to probe locally the chemical signature of this membrane and to provide a local map of its surface morphology.  相似文献   

8.
Shape-persistent oligo-p-phenylene-N,N-naphthalenediimide (O-NDI) rods are introduced as anion-pi slides for chloride-selective multiion hopping across lipid bilayers. Results from end-group engineering and covalent capture as O-NDI hairpins suggested that self-assembly into transmembrane O-NDI bundles is essential for activity. A halide topology VI (Cl > F > Br approximately I, Cl/Br approximately Cl/I > 7) implied strong anion binding along the anion-pi slides with relatively weak contributions from size exclusion (F >or= OAc). Anomalous mole fraction effects (AMFE) supported the occurrence of multiion hopping along the pi-acidic O-NDI rods. The existence of anion-pi interactions was corroborated by high-level ab initio and DFT calculations. The latter revealed positive NDI quadrupole moments far beyond the hexafluorobenzene standard. Computational studies further suggested that anion binding occurs at the confined, pi-acidic edges of the sticky NDI surface and is influenced by the nature of the phenyl spacer between two NDIs. With regard to methods development, a detailed analysis of the detection of ion selectivity with the HPTS assay including AMFE in vesicles is provided.  相似文献   

9.
In studies of solid supported lipid bilayers with atomic force microscopes (AFM) the force between tip and bilayer is routinely measured. During the approach of the AFM tip in aqueous electrolyte first a short-range repulsive force is observed. For many solid-like and some liquid-like lipid bilayers a subsequent break-through is observed. We observe such a break-through also for dioleoyloxypropyl-trimethylammonium chloride (DOTAP) which is expected to be liquid-like. Here we describe a model which assumes that the jump reflects the penetration of the AFM tip through the lipid bilayer. The model predicts a logarithmical dependence of the break-through force on the approaching velocity of the AFM tip. Two parameters are introduced: The ratio A/αV, α being a geometric factor, A being the area over which pressure is exerted on the bilayer, V the activation volume, and k0, the rate of spontaneous formation of a hole in the lipid bilayer that is big enough to allow the break-through of the tip. Experiments with bilayers consisting of DOTAP and dioleoylphosphatidylserine (DOPS) show that the break-through forces behave in the predicted way. For DOTAP we obtain ratios A/αV of about 58 nm−1 and rates k0 ranging from 1.9×10−8 to 2.5×10−4 s−1. For DOPS the corresponding values are 162 nm−1 and 2.0 s−1.  相似文献   

10.
Dyads consisting of a photochromic switch covalently linked to a fluorescent dye allow the emission from the dye to be controlled by reversible photoisomerization of the switch; one form of the switch quenches fluorescence by accepting energy from the dye. Here we investigate the use of dyads of this type for super-resolution imaging of lipid bilayers. Giant unilamellar vesicles stained with the dyads were imaged with about a two-fold resolution-enhancement compared with conventional confocal microscopy. This was achieved by exciting the fluorophore at 594 nm, using a switch activated by violet and red light (405/640 nm).

A photoswitchable quencher can be used to reversibly turn off the emission from a fluorescent dye, generating a small molecule dyad that is effective for super-resolution RESOLFT microscopy.  相似文献   

11.
Macrocyclic oligocholates were found in a previous work (Cho, H.; Widanapathirana, L.; Zhao, Y. J. Am. Chem. Soc.2011, 133, 141-147) to stack on top of one another in lipid membranes to form nanopores. Pore formation was driven by a strong tendency of the water molecules in the interior of the amphiphilic macrocycles to aggregate in a nonpolar environment. In this work, cholate oligomers terminated with guanidinium and carboxylate groups were found to cause efflux of hydrophilic molecules such as glucose, maltotriose, and carboxyfluorescein (CF) from POPC/POPG liposomes. The cholate trimer outperformed other oligomers in the transport. Lipid-mixing assays and dynamic light scattering ruled out fusion as the cause of leakage. The strong dependence on chain length argues against random intermolecular aggregates as the active transporters. The efflux of glucose triggered by these compounds increased significantly when the bilayers contained 30 mol% cholesterol. Hill analysis suggested that the active transporter consisted of four molecules. The oligocholates were proposed to fold into "noncovalent macrocycles" by the guanidinium-carboxylate salt bridge and stack on top of one another to form similar transmembrane pores as their covalent counterparts.  相似文献   

12.
Investigating the structural and mechanical properties of lipid bilayer membrane systems is vital in elucidating their biological function. One route to directly correlate the morphology of phase-segregated membranes with their indentation and rupture mechanics is the collection of atomic force microscopy (AFM) force maps. These force maps, while containing rich mechanical information, require lengthy processing time due to the large number of force curves needed to attain a high spatial resolution. A force curve analysis toolset was created to perform data extraction, calculation and reporting specifically in studying lipid membrane morphology and mechanical stability. The procedure was automated to allow for high-throughput processing of force maps with greatly reduced processing time. The resulting program was successfully used in systematically analyzing a number of supported lipid membrane systems in the investigation of their structure and nanomechanics.  相似文献   

13.
Three cholate foldamers were synthesized by the click reaction between an azide-functionalized cholate trimer and different dialkynyl linkers. The foldamers were labeled with pyrene groups at the ends for their conformational study. The linkers between the two tricholate fragments were found to strongly influence the conformation of the foldamers in solution, as well as their ability to transport hydrophilic molecules across lipid bilayers. The folding of the oligocholates in mixed organic solvents was studied by fluorescence and UV/Vis spectroscopy. Although these molecules could not fold permanently in lipid bilayers, they were found to translocate carboxyfluorescein readily across by a carrier-based mechanism. The transport is proposed to happen when the oligocholates adopt transiently folded structures with a hydrophobic exterior and a hydrophilic internal cavity. The transport rate strongly depended on the structure of the oligocholates and was sensitive even to the change of a single bond in a foldamer 3000 Da in MW. Better folded oligocholates in solution gave slower transport in the membranes.  相似文献   

14.
The ionic flux of Na+ K+ ions across monoolein and lecithin bilayers, separating two aqueous electrolyte solutions, has been measured in the presence of 5-decyl-4,7,13,16,21-pentaoxa-1,10-diazabicyclo-(8,8,5)-tricosane, 5-decyl-4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo(8,8,8)-hexacosane and their parent compounds 4,7,13,16,21-pentaoxa-1,10-diazabicyclo(8,8,5)-tricosane, 4,7,13,16,21,24-hexaoxa-1,10-diaza-bicyclo-(8,8,8)-hexacosane. Under the effects of an electric field, a significant increase of the membrane conductance, proportional to the macrocycle and/or to the electrolyte concentration, was observed. In spite of the high ion selectivity of both classes of cryptands, related to the different stability constants of the metal ion–macrobicyclic receptor complexes, alkyl cryptands show a greater efficiency to activate the ion transport across the lipid membranes than their parent compounds. Such a result has been explained taking into account the different hydrophobicity of the macrobicyclic compounds. Information on the ionic mobility and on the diffusion coefficient of the ionic species moving across the membrane have been obtained analyzing the experimental data in terms of the carrier mechanism based on the Eyring theory.  相似文献   

15.
In the past two decades, atomic force microscopy has been widely used for studying supported lipid bilayer related research, including the structure and dynamics of membranes and membrane proteins, and the interaction of membranes with chemical and biological molecules. The focus of this minireview is on the recent progress in the application of atomic force microscopy for supported lipid bilayers. Such progress mainly includes the application in the following aspects: submolecular-resolution imaging, in situ observation, and nanomechanics measurement.  相似文献   

16.
Bicellar mixtures, planar lipid bilayer assemblies comprising long- and short-chain phosphatidylcholine lipids in suspension, were used to form supported lipid bilayers on flat silicon substrate and on nanotextured silicon substrates containing arrays of parallel troughs (170 nm wide, 380 nm deep, and 300 nm apart). Confocal fluorescence and atomic force microscopies were used to characterize the resulting lipid bilayer. Formation of a continuous biphasic undulating lipid bilayer membrane, where the crests and troughs corresponded to supported and suspended lipid bilayer regions, is demonstrated. The use of interferometric lithography to fabricate nanotexured substrates provides an advantage over other nanotextured substrates such as nanoporous alumina by offering flexibility in designing different geometries for suspending lipid bilayers.  相似文献   

17.
Control of ionic transport through nanoporous systems is a topic of scientific interest for the ability to create new devices that are applicable for ions and molecules in water solutions. We show the preparation of an ionic transistor based on single conical nanopores in polymer films with an insulated gold thin film “gate.” By changing the electric potential applied to the “gate,” the current through the device can be changed from the rectifying behavior of a typical conical nanopore to the almost linear behavior seen in cylindrical nanopores. The mechanism for this change in transport behavior is thought to be the enhancement of concentration polarization induced by the gate. Figure   Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The interaction of cytochrome c (cyt c) with supported lipid membranes was investigated on the nanoscale by real-time atomic force microscopy. Cyt c promoted the formation and the expansion of depressed areas in the fluid parts of the bilayer. When the depressions reached the gel domains, they induced the thickening of their edges. According to the step-height differences, cyt c was able to remove neutral lipids in the fluid phase and then to reside on the mica surface. Concerning gel phases, cyt c might insert between the two lipid leaflets, or it might intercalate between the mica and the bilayer.  相似文献   

19.
This contribution describes the discovery and properties of a synthetic, low-molecular weight compound that transports Cl- across bilayer membranes. Such compounds have potential as therapeutics for cystic fibrosis and cancer. The H+/Cl- co-transport activities of acyclic tetrabutylamides 1-6 were compared by using a pH-stat assay with synthetic EYPC liposomes. The ion transport activity of the most active compound, trimer 3, was an order of magnitude greater than that of calix[4]arene tetrabutylamide C1 a macrocycle known to function as a synthetic ion channel. Trimer 3 has an unprecedented function for a synthetic compound, as it induces a stable potential in liposomes experiencing a transmembrane Cl-/SO42- gradient. Data from both pH-stat and 35Cl NMR experiments indicate that 3 co-transports H+/Cl-. Although 3 transports both Cl- and H+ the overall process is not electrically silent. Thus, trimer 3 induces a stable potential in LUVs due to a transmembrane anionic gradient. The ability of trimer 3 to transport Cl-, to maintain a transmembrane potential, along with its high activity at uM concentrations, its low molecular weight, and its simple preparation, make this compound a valuable lead in drug development for diseases caused by Cl- transport malfunction.  相似文献   

20.
There is substantial scientific and practical interest in engineering supported lipid bilayers with asymmetric lipid distributions as models for biological cell membranes. In principle, it should be possible to make asymmetric supported lipid bilayers by either the Langmuir-Blodgett/Schafer (LB/LS) or Langmuir-Blodgett/vesicle fusion (LB/VF) techniques (Kalb et al. Biochim. Biophys. Acta 1992, 1103, 307-316). However, the retention of asymmetry in biologically relevant lipid bilayers has never been experimentally examined in any of these systems. In the present work, we developed a technique that is based on fluorescence interference contrast (FLIC) microscopy to measure lipid asymmetry in supported bilayers. We compared the final degree of lipid asymmetry in LB/LS and LB/VF bilayers with and without cholesterol in liquid-ordered (l(o)) and liquid-disordered (l(d)) phases. Of five different fluorescent lipid probes that were examined, 1,2-dipalmitoyl-phosphatidylethanolamine-N-[lissamine rhodamine B] was the best for studying supported bilayers of complex composition and phase by FLIC microscopy. An asymmetrically labeled bilayer made by the LB/LS method was found to be at best 70-80% asymmetric once completed. In LB/LS bilayers of either l(o) or l(d) phase, cholesterol increased the degree of lipid mixing between the opposing monolayers. The use of a tethered polymer support for the initial monolayer did not improve lipid asymmetry in the resulting bilayer. However, asymmetric LB/VF bilayers retained nearly 100% asymmetric label, with or without the use of a tethered polymer support. Finally, lipid mixing across the center of LB/LS bilayers was found to have drastic effects on the appearance of l(d)-l(o) phase coexistence as shown by epifluorescence microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号