首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present DDA investigations of light scattering by irregular particles whose size is comparable with wavelength. We consider four types of randomly irregular particles: strongly damaged spheres, rough-surface spheres, pocked spheres, and agglomerated debris particles. Each type of particle is generated with a well defined algorithm producing an ensemble of stochastically different particles that have a common origin. The different types of irregular particles produce different angular dependencies of intensity and linear polarization degree. Transformation of phase curves of intensity and polarization with changing size parameter for irregular particles tends to be more monotonic, unlike spheres. We find that the magnitude of the negative polarization branch (NPB) tends to shrink as particle absorption increases; whereas, the maximal value and position of the positive polarization branch tends to increase. The most frequently observed shape of the negative polarization at small phase angles is asymmetric with a shift of the minimum position towards the angle of polarization sign inversion. All types of considered irregular particles reveal such asymmetry at x<10. Symmetric negative polarization branches occur seldom. The necessary conditions for their appearance are a relatively large size parameter x?10 to 12 and low absorption.  相似文献   

2.
利用离散偶极子近似法分析了一种随机取向旋转椭球体沙尘气溶胶粒子模型在尺度参数变化范围为0.1~23时(波长0.55!m对应有效半径为0.01~2!m)的光学特性,研究了沙尘粒子非球形性程度对其光学特性的影响,并考察了非球形粒子的随机取向能否用等体积球体来代替。就随机取向单分散和多分散旋转椭球体沙尘气溶胶而言,粒子非球形特征越明显,消光效率因子、不对称因子和单次散射反照率基本上偏离其等体积球体越大;对于相同的非球形,不对称因子偏离其等体积球体的相对偏差要比消光效率因子和单次散射反照率要大。非球形粒子的随机取向并不能使其光学特性严格等效为其等体积球体的光学特性。如果粒子形状偏离球体较小,则非球形粒子的随机取向的平均效果能使其消光效率因子、不对称因子和单次散射反照率近似用等体积球体的对应光学参量来等效;而如果粒子形状偏离球形较大,仅有单次散射反照率可以近似用等体积球体的单次散射反照率来等效,例如,轴半径比为16的旋转椭球体沙尘粒子的单次散射反照率偏离其等体积球体仅在3%以内。  相似文献   

3.
Dust particles in space often grow by mutual collisions and appear to be an agglomeration of individual grains, the morphology of which can be described by the concept of fractals. In this paper, we study light scattering by fractal aggregates of identical spheres (monomers) using the superposition technique incorporated into the T-matrix method where the orientationally averaged scattering matrix is analytically obtained. We also apply the discrete-dipole approximation, in which the dipole polarizability of spherical monomers is determined by the first term of the scattering coefficients in the Mie theory. Two cases of the ballistic aggregation process (particle–cluster and cluster–cluster aggregations) are considered to model fractal aggregates consisting of silicate or carbon material. The dependences of light-scattering properties on the monomer sizes, aggregate structures and material compositions are intensively investigated. The light-scattering properties of the fractal aggregates strongly depend on the size parameters of the monomers. The difference in the scattering function between the particle–cluster and cluster–cluster aggregates can be seen in the case of monomers much smaller than the wavelength of incident radiation. When the size parameter of monomers exceeds unity, the material composition of the monomers influences the light-scattering properties of the aggregates, but different morphologies result in similar scattering and polarization patterns. We show that silicate aggregates consisting of submicron-sized monomers, irrespective of the aggregate size and morphology, produce a backscattering enhancement and a negative polarization observed for dust in the solar system.  相似文献   

4.
Coherence effects in the backward-scattering direction, such as enhanced backscattering (EBS) and the appearance of a negative polarization branch (NPB), are investigated for a simple scattering system composed of two dipolelike particles separated by a fixed distance. The influence on these effects of coupling resonances between the particles is analyzed. The appearance of these coherent phenomena (EBS and NPB) and their relationship as a function of the optical properties of the particles (polarizability) and particle separation are also studied.  相似文献   

5.
We present a light scattering study of aqueous suspensions of microgel particles consisting of poly(N-Isopropyl-Acrylamide) cross-linked gels. The solvent quality for the particles depends on temperature and thus allows tuning of the particle size. The particle synthesis parameters are chosen such that the resulting high surface charge of the particles prevents aggregation even in the maximally collapsed state. We present results on static and dynamic light scattering (SLS/DLS) for a highly diluted sample and for diffuse optical transmission on a more concentrated system. In the maximally collapsed state the scattering properties are well described by Mie theory for homogenous hard spheres. Upon swelling we find that a radially inhomogeneous density profile develops.  相似文献   

6.
The single-scattering properties of Gaussian random spheres are calculated using the discrete dipole approximation. The ensemble of model particles is assumed to be representative for a feldspar dust sample that is characteristic for weakly absorbing irregularly shaped mineral aerosol. The morphology of Gaussian random spheres is modeled based on a statistical shape analysis using microscope images of the dust sample. The size distribution of the dust sample is based on a particle sizing experiment. The refractive index of feldspar is estimated using literature values. All input parameters used in the light scattering simulations are thus obtained in an objective way based on the true properties of the mineral sample. The orientation-averaged and ensemble-averaged scattering matrices and cross sections of the Gaussian random spheres are compared with light scattering simulations using spheroidal shape models which have been shown to be applicable to the feldspar sample. The Gaussian random sphere model and the spheroidal shape model are assessed using the measured scattering matrix of the feldspar dust sample as a reference. Generally, the spheroidal model with strongly elongated prolate and strongly flattened oblate shapes agrees better with the measurement than the Gaussian random sphere model. In contrast, some features that are characteristic for light scattering by truly irregular mineral dust particles are rendered best by the Gaussian random sphere model; these features include the flat shape of the phase function and a minimum in the scattering matrix element F22/F11 as a function of the scattering angle.  相似文献   

7.
A theory of permittivity of suspension-type systems is developed that allows one to calculate such optical parameters of inhomogeneous systems as the length of scattering and the transport length. It is shown that, in the Born approximation, which takes into account two-particle correlations in the arrangement of scattering particles, the theoretical and experimental data are in agreement only to within tens of percent. The contribution of three-particle correlations to the permittivity of a system of solid spheres is determined. It is shown that, in describing the optical properties of suspensions with a large difference between the refractive indices of the medium and the particles, it does not suffice to replace the Rayleigh-Gans form factor by the Mie form factor, even under a restriction to two-particle correlations.  相似文献   

8.
In this research, the influence of the optical constants ε and μ on the scattering patterns of a system consisting of two interacting Rayleigh particles is analyzed. We study specific scattering configurations in which the particles are separated by a fixed distance and where the connecting axis has fixed orientations with respect to the incident electromagnetic field. Multiple scattering effects and how they are affected by the optical properties of the particles are considered.  相似文献   

9.
10.
11.
The angular dependence of brightness and linear polarization of randomly oriented aggregates has been investigated in order to find rules connecting their scattering properties with their structure, packing density, complex refractive index, and number and size of the spheres forming the aggregate. Our study is based on an interpretation in terms of successive orders of scattering, in particular on the analysis of the contribution of the interference and near-field effects. Such an approach allowed us to explain and interrelate the main peculiarities of the angular dependence of the intensity and polarization displayed by aggregates. Of special interest are the aggregates showing a so-called negative branch of linear polarization of light scattered into angles close to the backscattering direction. It has been shown that the enhancement of intensity and the negative polarization in this angular range are mainly caused by the interference of multiply scattered waves as well as by near-field effects. If the number of particles in the aggregate is large enough and its size is comparable to the wavelength, the backscattering enhancement is caused by the particles in the surface layers of the aggregate, where the radiation field is mostly homogeneous, while the negative branch is mainly generated by the deeper layers of particles, where the radiation field is inhomogeneous with chaotic changes of amplitudes and phases. This results in a rather weak dependence of the negative polarization on particle location in the deeper layers of the aggregate and on particle number but not on packing density.  相似文献   

12.
We detected the second-order nonlinear response from single isolated spheres comprised from a centrosymmetric material but covered by a layer of a material with strong second-order nonlinear properties and isolated from an ensemble by the optical trapping technique. We show that when large size parameter spheres are used, the measured second-harmonic efficiency deviates strongly from the prediction of the nonlinear Rayleigh scattering theory. Our results are in very good agreement with the predictions from the exact nonlinear Mie scattering theory.  相似文献   

13.
Many applications in remote sensing, material sciences and biomedical field are characterized by a transition domain between single scattering and multiple-scattering regimes. This regime is described by typical polarization features which can be used to retrieve structural information. An electronically agile technique was used for measuring in real time the Stokes vectors of light incident on and emerging from an inhomogeneous medium. Subsequently, the Mueller matrix associated with the scattering medium is determined. We focus our attention on forward scattering from systems consisting of random as well as partially oriented long cylindrical fibers. We discuss the effects of: (1) shape of individual scattering centers, (2) structure parameter, and (3) optical density of the scattering medium. The anisotropic behavior of the structure function at different packing fractions determines nontrivial characteristics of the polarization transfer. The complex effective index of refraction can be polarization dependent as a result of the optical anisotropy due to both the shape of the individual scatterers and the structure characteristics of the scattering system. Some of the Mueller matrix elements are shown to be related to the optical anisotropy of the system for the case of long cylindrical fibers. The polarization efficiency, the structure parameter, and the packing fraction are used to quantify this relationship. We also found that some of the matrix elements are more sensitive to the degree of structural anisotropy and the packing fraction, while other elements are sensitive to structural non-uniformities across the investigated area.  相似文献   

14.
We present the results of our experimental investigation of light scattering by polydisperse colloids of diamond and graphite. The scattering is studied at a random orientation of particles and in an external radiofrequency electric field, which orients particles along the strength. The average dimensions of particles in both colloids are close to each other and comparable with the wavelength of the incident light. The shape of particles and the optical and electrooptical properties of diamond and graphite colloids are significantly different. We analyze the polarization components of scattered light energy when the light incident on the colloids is linearly polarized. We show that the quadrupole light scattering by isotropic diamond particles has the main effect on angular dependences of depolarization of scattered light. For light scattering by anisotropic graphite particles, the depolarization of scattered light is mainly determined by a particular feature of the dipole scattering of particles. It is shown that, in both colloids, the orientational order of particles considerably reduces the depolarization of light scattered by particles. We show that relative changes in the intensity and depolarization of scattered light, which depend on the scattering angle and polarization direction of light, as well as on the parameters of particles, can be used as a measure of electrooptical effects observed in colloids.  相似文献   

15.
Light scattering is a useful tool in optical particle characterization. It can help to understand the nature of single particles as well as systems or clusters of particles; information about particle sizes, materials or shapes can be gathered. In this paper we investigate the application of light scattering studies to the analysis of a sintering process of silver nanoparticles. For this we first simulate the scattering behavior of two silver spheres. Then we assume sintering between them, leading to a single particle with a concave, peanut-like shape. We approximate this shape by a Cassini-oval. For light scattering studies we use an advanced T-matrix algorithm, the Nullfield Method with Discrete Sources. This method proved to be capable of simulating light scattering by concave particles. To make sure that the calculated data are correct we do comparative simulations using the Discrete Sources Method.  相似文献   

16.
17.
We report the results of our theoretical studies of the optical properties of hybrid nanoparticles consisting of the metal core covered with molecular J-aggregates. We evaluate the cross sections of absorption and scattering of light by such particles on the basis of the extended Mie theory for two concentric spheres with material dielectric functions that take into account the size effect associated with scattering of free electrons from the core/shell interface. We carry out our calculations in a wide range of light wavelengths and geometrical parameters of the composite system for silver and gold core and for a J-aggregate shell composed of different cyanine dyes. The results obtained demonstrate the quite different behavior of the extinction spectra of such particles caused by the different strengths of interaction between the Frenkel exciton and the dipolar or multipolar plasmons. We pay particular attention to the investigation of spectral peak positions associated with the eigenfrequencies of hybrid modes in the system and peak intensities as functions of reduced oscillator strength in the molecular J-band for various relationships between the core radius and shell thickness. This provides an efficient means for the explanation of the main features in the optical properties of metal/J-aggregate nanoparticles and can be used for an effective control of the plasmon–exciton coupling strength in such hybrid complexes.  相似文献   

18.
Mineral dust aerosols have complex nonspherical shapes and varying composition. This study utilizes data on morphology (size and shape) and composition of dust particles to determine the extent to which the optical properties of real particles differ from those of spheres. A method for modeling the optical properties of complex particle mixtures is proposed. The method combines dust particle composition-shape-size (CSS) distributions reconstructed from the electron microscopy data, effective medium approximations and discrete dipole approximation. The method is used to compute optical characteristics of realistic dust mixtures representative of Saharan and Asian dust. We demonstrate that considered CSS distributions result in various differences in the extinction coefficient, single scattering albedo, asymmetry parameter and the scattering phase function relative to the volume-equivalent spheres and the mixtures of the randomly oriented oblate and prolate spheroids. Implications of these differences for radiation/climate modeling and remote sensing are discussed.  相似文献   

19.
Radiative heat transfer through opacified (metallic or metallized) cylindrical fibers and spherical powders is investigated theoretically. The radiative properties of these packed particles are evaluated by using the solutions of electromagnetic theory. The large optical constants and large particle size parameters require an improved numerical scheme for evaluation of these properties. The results show that fine metal fibers provide excellent thermal radiation resistance. For the packed spheres, the high solid volume fraction restricts the present model to the geometric scattering regime. The results in this regime indicate better radiation resistance for smaller spheres. It is also interesting to note that, relative to unopacified spheres, the opacified spheres have higher thermal radiation resistance only at high temperatures.  相似文献   

20.
冰水混合云对可见光的吸收和散射特性   总被引:2,自引:0,他引:2       下载免费PDF全文
孙贤明  韩一平 《物理学报》2006,55(2):682-687
根据Mie理论,分别计算了由纯水、纯冰和冰-水同心球形粒子构成的云层在可见光波段的单次散射特性. 根据辐射传输理论,利用叠加法数值计算了这三种不同构成的云层的反射函数,以及它们的平面反照率、透过率和吸收率. 结果表明,冰云和冰_水云的反射函数和平面反照率在大部分散射角下要略小于水云,而透过率却比水云的大. 通过具体的数值计算结果和理论分析,研究了水云的异常吸收现象. 关键词: 冰_水粒子 Mie理论 叠加法 光散射  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号