首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coordination properties of three natural aromatic amino acids (AAAs)-phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp)-to AlIII are studied in this work, devoting special attention to the role of the aromatic side chain. A comparison with aluminum(III)-alanine complexes is also presented. The polarizability arising from the ring has been seen to be a key factor in the stability of the complexes, with the order being Trp-AlIII > Tyr-AlIII > Phe-AlIII, starting from the most stable one. Cation-pi interactions between the metal and the aromatic ring are present in the lowest energy conformers, especially for Trp, which seems to be very well suited for these kinds of interactions, occurring with both the six- and five-membered rings of the indole side chain. The most stable coordination mode for the three AAAs is found to be tricoordinated with the N and O of the backbone chain and the aromatic ring, as was found theoretically and experimentally for other metals.  相似文献   

2.
Nine polymers with kinked aromatic structures in the main chain and biphenylene‐type mesogenic groups in the side chain were synthesized by the polyaddition of bis(epoxide)s and thio‐ and O‐esters. Tetrabutylphosphonium chloride and tetraphenylphosphonium chloride effectively catalyzed the polymerization. The thermal behavior of the polymers was measured by DSC and polarizing optical microscopy. The effect of annealing time on the degree of crystallization was investigated by DSC analysis. Polymers containing 100% of the kinked aromatic groups and 1,3‐propylene glycol in the main chain were amorphous. However, when half of the main‐chain aromatic moieties were composed of kinked groups and the other half of the aromatics were linear rodlike groups, the polymers were crystalline. The incorporation of kinked groups into the main chain of side‐chain liquid‐crystalline polymers suppressed the formation of liquid crystallinity. The polymer with mesogenic aromatic structures in both the main chain and the side chain was capable of forming a liquid‐crystalline phase. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 988–998, 2000  相似文献   

3.
Ab initio calculations of the Raman spectra of ladder type oligo (p-phenylenes) (LOPP) were done in order to study the influence of the side chains attached on the methine bridge and the aromatic rings. We found that the aromatic CC stretching modes and the interring CC stretching modes are significantly influenced. Due to the attachment of an aromatic side chain on the methin bridge, an additional strong mode appears in the interring CC stretching region. Side chains on the aromatic rings cause a splitting of the aromatic CC stretching mode.  相似文献   

4.
Aromatic side chains on amino acids influence the fragmentations of cationic complexes of doubly charged metal ions and singly deprotonated peptides. The metal ion interacts with an aromatic side chain and binds to adjacent amide nitrogens. When fragmentation occurs, this bonding leads to the formation of abundant metal-containing a-type ions by reactions that occur at the sites of amino acids that contain the aromatic side chain. Furthermore, formation of metal-containing immonium ions of the amino acids that contain the aromatic side chain also are formed. The abundant a-type ions may be useful in interpretation strategies in which it is necessary to locate in a peptide the position of an amino acid that bears an aromatic side chain.  相似文献   

5.
The first total synthesis of (-)-calicoferol B (III) is described. The cyclozirconation product I, prepared in enantiomerically pure form, was converted into the CD ring chiron II. This was coupled with the aromatic A-ring, and then the side chain was constructed with control of relative and absolute configuration to complete the total synthesis of III. The first total synthesis of (-)-calicoferol B (1) is described. The cyclozirconation product 8, prepared in enantiomerically pure form, was converted into the CD ring chiron 6. This was coupled with the aromatic A-ring, and then the side chain was constructed with control of relative and absolute configuration to complete the total synthesis of 1.  相似文献   

6.
五彩湾煤镜质组与惰质组在热解中的相互作用   总被引:1,自引:0,他引:1  
以五彩湾煤镜质组、惰质组为研究对象,建立两种不同的体系,镜质组与惰质组无相互作用体系(A)和相互作用体系(B)。利用热重技术(TG)和傅里叶变换红外技术(FT-IR),将两体系的热解固体产物进行红外分析。结果表明,在300~450℃,体系B的脂肪氢含量高于体系A,表明镜质组与惰质组之间发生了烷基自由基转移反应,芳氢的含量也是体系B多于体系A,这说明镜质组与惰质组之间同时发生了芳构化作用,随温度升高,镜质组生成少量氢自由基与惰质组发生侧链取代反应;在500~700℃,体系B的脂肪氢含量和芳氢含量均低于体系A,表明此时镜质组与惰质组之间发生缩聚反应及缩合反应;750~800℃时,脂肪氢和芳香氢含量均为体系B大于体系A,说明体系B中,镜质组产生较多的氢自由基与惰质组大分子芳香结构发生氢化反应,同时与惰质组发生侧链取代反应;850~900℃时,镜质组与惰质组之间进一步发生多环芳香缩合反应。  相似文献   

7.
C(α)-C(β) chromophore bond dissociation in some selected methionine-containing dipeptides induced by UV photons is investigated. In methionine containing dipeptides with tryptophan as the UV chromophore, the tryptophan side chain is ejected either as an ion or as a neutral fragment while in dipeptides with tyrosine, the tyrosine side chain is lost only as a neutral fragment. Mechanisms responsible for these fragmentations are proposed based on measured branching ratios and fragmentation times, and on the results of DFT/B3-LYP calculations. It appears that the C(α)-C(β) bond cleavage is a non-statistical dissociation for the peptides containing tyrosine, and occurs after internal conversion for those with tryptophan. The proposed mechanisms are governed by the ionization potential of the aromatic side chain compared to that of the rest of the molecule, and by the proton affinity of the aromatic side chain compared to that of the methionine side chain. In tyrosine-containing peptides, the presence of oxygen on sulfur of methionine presumably reduces the ionization potential of the peptide backbone, facilitating the loss of the side chain as a neutral fragment. In tryptophan-containing peptides, the presence of oxygen on methionyl-sulfur expedites the transfer of the proton from the side chain to the sulfoxide, which facilitates the loss of the neutral side chain.  相似文献   

8.
Summary. The cycloaddition between N,N-maleoyl amino acid esters and 1-(1-trimethylsiloxyvinyl)-3,4-dihydronaphthalene gave 11-(trimethylsiloxy) derivatives of 16-azaestra-1,3,5(10)-trienes. These were transformed by desilylation into the parent 11-oxo-derivatives, which reacted with hydroxylamines to 11-hydroxyimino derivatives. The stereochemistry of the products was elucidated using different NMR methods, HPLC, CD, X-ray structure analysis, and calculations. It was found that mixtures of diastereoisomers were obtained from these cycloadditions. Reactions using chiral maleoyl amino acid derivatves did not change this result. The chiral center did not provoke stereoselectivity, probably caused by the flexibility of the chiral side chain. A directing influence of the side chain was found only in reactions with derivatives of phenylalanine. This might be explained as an interaction between the aromatic system and the carbonyl groups of the imide moiety. This interaction kept the aromatic ring in its position in the final product, and was found in the X-ray crystallographic analysis, and agreed with results of calculations.  相似文献   

9.
As a representative folding system that features a conjugated backbone, a series of monodispersed (o‐phenyleneethynylene)‐alt‐(p‐phenyleneethynylene) (PE) oligomers of varied chain length and different side chains were studied. Molecules with the same backbone but different side‐chain structures were shown to exhibit similar helical conformations in respectively suitable solvents. Specifically, oligomers with dodecyloxy side chains folded into the helical structure in apolar aliphatic solvents, whereas an analogous oligomer with tri(ethylene glycol) (Tg) side chains adopted the same conformation in polar solvents. The fact that the oligomers with the same backbone manifested a similar folded conformation independent of side chains and the nature of the solvent confirmed the concept that the driving force for folding was the intramolecular aromatic stacking and solvophobic interactions. Although all were capable of inducing folding, different solvents were shown to bestow slightly varied folding stability. The chain‐length dependence study revealed a nonlinear correlation between the folding stability with backbone chain length. A critical size of approximately 10 PE units was identified for the system, beyond which folding occurred. This observation corroborated the helical nature of the folded structure. Remarkably, based on the absorption and emission spectra, the effective conjugation length of the system extended more effectively under the folded state than under random conformations. Moreover, as evidenced by the optical spectra and dynamic light‐scattering studies, intermolecular association took place among the helical oligomers with Tg side chains in aqueous solution. The demonstrated ability of such a conjugated foldamer in self‐assembling into hierarchical supramolecular structures promises application potential for the system.  相似文献   

10.
Isatin derivatives containing a 4-nitrophenyl group in the side chain or a nitro group in the aromatic fragment reacted with tris(diethylamino)phosphine to give the corresponding isoindigo derivatives with high yields and chemoselectivity.  相似文献   

11.
比较了3种主链结构相同而侧链结构不同的磺化聚芳醚(SPAE)材料的性能. 分析了侧链结构对聚合物的吸水、 溶胀及质子传导行为的影响. 结果表明, 在相同的离子交换容量(IEC)条件下, 具有柔顺脂肪族侧链的聚芳醚材料具有较高的质子传导率. 其原因是由于柔顺的脂肪族侧链比刚性的芳香族侧链更易运动, 有利于侧链末端磺酸基团的聚集, 进而形成离子簇. 3种聚合物微观形貌的分析结果表明, 含柔顺侧链结构的聚合物薄膜具有更大的质子传输通道, 其结果与聚合物的宏观吸水和传导现象相吻合.  相似文献   

12.
The cycloaddition between N,N-maleoyl amino acid esters and 1-(1-trimethylsiloxyvinyl)-3,4-dihydronaphthalene gave 11-(trimethylsiloxy) derivatives of 16-azaestra-1,3,5(10)-trienes. These were transformed by desilylation into the parent 11-oxo-derivatives, which reacted with hydroxylamines to 11-hydroxyimino derivatives. The stereochemistry of the products was elucidated using different NMR methods, HPLC, CD, X-ray structure analysis, and calculations. It was found that mixtures of diastereoisomers were obtained from these cycloadditions. Reactions using chiral maleoyl amino acid derivatves did not change this result. The chiral center did not provoke stereoselectivity, probably caused by the flexibility of the chiral side chain. A directing influence of the side chain was found only in reactions with derivatives of phenylalanine. This might be explained as an interaction between the aromatic system and the carbonyl groups of the imide moiety. This interaction kept the aromatic ring in its position in the final product, and was found in the X-ray crystallographic analysis, and agreed with results of calculations.  相似文献   

13.
The issue of the influence of the side chain/backbone interaction on the local conformational preferences of a phenylalanine residue in a peptide chain is addressed. A synergetic approach is used, which combines gas-phase UV spectroscopy as well as gas-phase IR/UV double-resonance experiments with DFT and post Hartree-Fock calculations. N-Acetyl-Phe-amide was chosen as a model system for which three different conformers were observed. The most stable conformer has been identified as an extended beta(L) conformation of the peptide backbone. It is stabilized by a weak but significant NH-pi interaction bridging the aromatic ring on the residue (i) with the NH group on residue (i+1), with the aromatic side chain being in an anti conformation. This stable conformation corresponds to the common NH(i+1)-aromatic(i) interaction encountered in proteins for the three aromatic residues (phenylalanine, tyrosine, and tryptophan), which illustrates the relevance of gas-phase investigations to structural biology issues. The two other less abundant conformers have been assigned to two gamma-folded backbone conformations that differ by the orientation of the side chain. In all cases, the IR data provided spectroscopic fingerprints of these interactions. Finally, the strong conformational dependence of the fluorescence yield found for N-acetyl-Phe-amide illustrates the role of the environment on the excited-state dynamics of these species, which is often exploited by biochemists to monitor protein structural changes from tryptophan lifetime measurements.  相似文献   

14.
This paper describes the indirect electrooxidation of the side chain of aromatic com.pounds with a Ce(Ⅳ)/Ce(Ⅲ)redox system.The reaction has the following advantages:favourableselectivity,high yield,nonpollution and economy.  相似文献   

15.
Using CATALYST, a three-dimensional QSAR pharmacophore model for chloroquine(CQ)-resistance reversal was developed from a training set of 17 compounds. These included imipramine (1), desipramine (2), and 15 of their analogues (3-17), some of which fully reversed CQ-resistance, while others were without effect. The generated pharmacophore model indicates that two aromatic hydrophobic interaction sites on the tricyclic ring and a hydrogen bond acceptor (lipid) site at the side chain, preferably on a nitrogen atom, are necessary for potent activity. Stereoelectronic properties calculated by using AM1 semiempirical calculations were consistent with the model, particularly the electrostatic potential profiles characterized by a localized negative potential region by the side chain nitrogen atom and a large region covering the aromatic ring. The calculated data further revealed that aminoalkyl substitution at the N5-position of the heterocycle and a secondary or tertiary aliphatic aminoalkyl nitrogen atom with a two or three carbon bridge to the heteroaromatic nitrogen (N5) are required for potent "resistance reversal activity". Lowest energy conformers for 1-17 were determined and optimized to afford stereoelectronic properties such as molecular orbital energies, electrostatic potentials, atomic charges, proton affinities, octanol-water partition coefficients (log P), and structural parameters. For 1-17, fairly good correlation exists between resistance reversal activity and intrinsic basicity of the nitrogen atom at the tricyclic ring system, frontier orbital energies, and lipophilicity. Significantly, nine out of 11 of a group of structurally diverse CQ-resistance reversal agents mapped very well on the 3D QSAR pharmacophore model.  相似文献   

16.
The attack of hydroxyl radicals on aromatic amino acid side chains, namely phenylalanine, tyrosine, and tryptophan, have been studied by using density functional theory. Two reaction mechanisms were considered: 1) Addition reactions onto the aromatic ring atoms and 2) hydrogen abstraction from all of the possible atoms on the side chains. The thermodynamics and kinetics of the attack of a maximum of two hydroxyl radicals were studied, considering the effect of different protein environments at two different dielectric values (4 and 80). The obtained theoretical results explain how the radical attacks take place and provide new insight into the reasons for the experimentally observed preferential mechanism. These results indicate that, even though the attack of the first .OH radical on an aliphatic C atom is energetically favored, the larger delocalization and concomitant stabilization that are obtained by attack on the aromatic side chain prevail. Thus, the obtained theoretical results are in agreement with the experimental evidence that the aromatic side chain is the main target for radical attack and show that the first .OH radical is added onto the aromatic ring, whereas a second radical abstracts a hydrogen atom from the same position to obtain the oxidized product. Moreover, the results indicate that the reaction can be favored in the buried region of the protein.  相似文献   

17.
A number of phenol- and catechol- amines has been studied in aqueous solutions at acidic and alkaline pD by means of 13C NMR. Resonance assignments are achieved for the fully protonated forms and the influence of the side chain on the aromatic carbons is studied. The shielding effects associated with the various types of side chain tend to follow an additive relationship. The pD dependence of the ring and side chain carbon resonances in phenolamines is accounted for by considering the sum of two separate and opposite effects related to ring and side chain deprotonations. Such a simple model fails to apply to the catechol derivatives. This difference is discussed in terms of the orientational dependence of the deprotonation shifts. It is shown that the protonated amino group is the less acidic group in phenol- and catechol-amines.  相似文献   

18.
The kinetic effects of DBSA (dodecyl benzene sulfonic acid) and a linear amphihile on asphaltene aggregation was investigated, using dissipative particle dynamics molecular simulations. The simulation results indicated that without inhibitor, diffusion-limited asphaltene aggregation can be initiated by a kinetic/diffusive capture process between polar side chain groups rather than by interaction between polyaromatic rings. The most likely reason for this is that the side chains have higher diffusive mobility than the more massive aromatic ring structures. The DBSA acidic head groups adhered to the asphaltene side chain polar groups (the basic functional groups), resulting in lowered mobility of the side chain/DBSA complexes, thereby suppressing asphaltene aggregation initiation. A more mobile amphiphilic inhibitor without the aromatic ring gave a higher asphaltene aggregation rate. Adsorption of asphaltenes on a solid surface was suppressed with DBSA, due to an adsorbed mono-layer of DBSA that occupied a significant fraction of the surface area.  相似文献   

19.
Aromatic xanthates and dithiocarbamates were used as chain‐transfer agents (CTAs) in reversible addition–fragmentation chain‐transfer (RAFT) polymerizations of ethylene under milder conditions (≤80 °C, ≤200 bar). While detrimental side fragmentation of the intermediate radical leading to loss of living chain‐ends was observed before with alkyl xanthate CTAs, this was absent for the aromatic CTAs. The loss of living chain‐ends was nevertheless detected for the aromatic xanthates via a different mechanism based on cross‐termination. Narrow molar‐mass distributions with dispersities between 1.2 and 1.3 were still obtained up to number average molar masses Mn of 1000 g mol?1. The loss of chain‐ends was minor for dithiocarbamates, yielding polyethylene up to Mn=3000 g mol?1 with dispersities between 1.4 and 1.8. While systems investigated showed significant rate retardation, the dithiocarbamates are the first CTAs giving polyethylene with a high livingness via RAFT polymerization.  相似文献   

20.
The model of a proton-conducting membrane based on sulfonated aromatic poly(ether ether ketone) has been constructed in the context of the mesoscale-dynamics method. The structure of the polymer is represented as a linear adjusted sequence of polar and nonpolar chain units. The degree of sulfonation and water content in the system are the main parameters during calculations. The constructed model shows that microphase separation of hydrophilic and hydrophobic polymer chain units occurs even at small water contents. A spatial network of water domains that has walls made of polymer-matrix polar chain units is formed within the membrane volume. The estimation of the percolation threshold demonstrates that water domains form a penetrating system of channels at water contents as low as 5–9%. Analogous simulations have been performed for the well-studied Nafion-1100 membrane. Although the morphologies of hydrophilic channels in sulfonated aromatic poly(ether ether ketone) and Nafion differ substantially, their cross sections are close. The results make it possible to consider sulfonated aromatic poly (ether ether ketone) a possible alternative to Nafion during the development of proton-conducting membranes for new-generation fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号