首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of both anionic (sodium dodecyl sulfate, SDS) and cationic (dodecylpyridine bromide, DPB) surfactants on the phase transition of narrowly distributed poly(N-isopropylacrylamide) (PNIPAM) microgel particles were investigated by laser light scattering. The addition of SDS swells the particles and increases the phase transition temperature, while DPB has a much smaller effect. This difference cannot be due to an association between the surfactant hydrophobic tail and PNIPAM because DPB and SDS have an identical hydrophobic tail. The amide groups in PNIPAM are slightly protonized in deionized water (pH ∼ 5.5). Our results contradict a previous prediction that oppositely charged surfactants will collapse a polyelectrolyte gel. After adding SDS, a two-step phase transition of the PNIPAM gel is observed. This suggests that SDS forms micelles inside the microgel with the help of the immobilized counter ions on the gel network. The SDS micelles are broken into individual SDS molecules in the first step of phase transition, while in the second step individual SDS molecules are gradually expelled. Surfactant effects on the microgel particles are compared with those of individual PNIPAM chains. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Microgel particles are cross-linked polymer particles. When dispersed in a good solvent for the polymer concerned, they are able to respond to a range of external stimuli by changing volume. Hence, microgel particles are suited to numerous applications (for example, controlled uptake and release) in the pharmaceutical, coatings, and water treatment industries. In this work, pH-sensitive, 0.5 wt % cross-linked poly(2-vinylpyridine) (PVP) microgel particles have been prepared and characterized. When the dispersion pH is decreased below 4.5, the pyridine groups become protonated and the microgel network becomes positively charged, causing the particles to expand. To investigate the possibility of using light as a trigger for effecting volume changes, the interaction of these microgel particles with a photodegradable anionic surfactant, 4-hexylphenylazosulfonate (C(6)PAS), has been investigated using dynamic light scattering and electrophoretic mobility measurements. The electrostatic attraction between the positively charged microgel network (at solution pH 3) and the negatively charged headgroups on the surfactant molecules caused a dramatic decrease in particle volume, and charge-reversal of the particles occurred with increasing surfactant concentration. The UV irradiation of phenylazosulfonate surfactants destroys the anionic headgroup of the molecules, and the microgel particles re-swell. The irradiation of PVP dispersions in the presence of C(6)PAS, along with mixed surfactant systems of sodium dodecyl sulfate plus C(6)PAS, has been investigated.  相似文献   

3.
用沉降聚合法制备了聚(N-异丙基丙烯酰胺-co-甲基丙烯酸)微凝胶, 并用NMR, DLS分析测定了微凝胶结构及凝胶颗粒在不同离子强度下粒径和表面电势的变化. 25 ℃时在pH=7的溶液中Zeta电位为-18 mV, 随离子强度增加, 逐渐减小. 当NaCl浓度达0.2 mol/L时基本不变, 表明微凝胶表面电荷受到屏蔽, 浓度继续增加主要使凝胶颗粒收缩. 加热引起微凝胶收缩, 颗粒表面电荷密度增大, Zeta电位增大. 在0.2 mol/L NaCl溶液中, 41 ℃时微凝胶的Zeta电位可达-12.4 mV, 使微凝胶稳定. 较高离子强度时, Zeta电位随温度升高发生突变, 微凝胶表面几乎为中性, 其突变温度与临界絮凝温度(CFT)相当. CFT随离子强度增加向低温迁移, 微凝胶聚集速率在高温时比低温时快.  相似文献   

4.
We report on pH‐responsive and thermoresponsive hybrid materials based on the assembly of gold nanorods, Au NRs, into multiresponsive, crosslinked copolymer microgel particles. These microgel particles were prepared by the surfactant‐free emulsion polymerization of N‐isopropylacrylamide and acrylic acid using N, N′‐methylene bis‐acrylamide as a crosslinker, which produces particles measuring approximately 160 nm that are interconnected to one other. Cetyltrimethyl ammonium bromide‐stabilized Au NRs were also prepared independently using a seed‐mediated growth method and then loaded into swollen, deprotonated, acrylic acid‐containing microgel particles using the electrostatic interactions between the oppositely charged particles. Transmission electron micrographs of the as‐prepared hybrid Au NR–microgel particles confirmed that the Au NRs were attached to the surface of the microgel particles. The size‐dependent temperature‐responsive characteristics of the hybrid microgel particles were studied by dynamic light scattering, and it was found that as the temperature increased across the phase transition temperature, the particle size decreased to 56% of the original volume. The thermoresponsive and pH‐responsive optical properties of the hybrid microgel particles were also systematically investigated. The thermo‐ and pH‐induced shrinkage of the microgel led to an increase in the UV–vis absorption intensity and caused a significant blue shift in the longitudinal surface plasmon bands of the Au NRs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
We describe a facile approach for the synthesis of micrometer‐sized (∼3.5 μm), pH‐responsive microgel particles, which have functional carboxylic acid groups concentrated in the shell. The large size offers the possibility to directly study the interactions between individual, isolated microgel particles with active ingredients by optical microscopy. Our results show that the synthesized microgel particles can load and release active ingredients via changing pH values. The complexation of Ca2+ with the ‐COOH functional groups located at the microgel surfaces not only regulates the active ingredient's uptake efficiency, but also provides a novel way to reveal the spatial distribution of the functional groups inside the microgel particles.  相似文献   

6.
The use of microgels for controlled uptake and release has been an area of active research for many years. In this work copolymer microgels of N-isopropylacrylamide (NIPAM) and acrylic acid (AAc), containing different concentrations of AAc and also cross-linking monomer, have been prepared and characterized. These microgels are responsive to pH and temperature. As well as monitoring the equilibrium response to changes in these variables, the rates of swelling/de-swelling of the microgel particles, on changing either the pH or the temperature, have also been investigated. It is shown that the rate of de-swelling of the microgel particles containing AAc is much faster than the rate of swelling, on changing the pH appropriately. This is explained in terms of the relative mobilities of the H(+) and Na(+) ions, in and out of the particles. It was observed that the microgels containing AAc, at pH 8, de-swelled relatively slowly on heating to 50 degrees C from 20 degrees C. This is attributed to the resistance to collapse associated with the large increase in counterion concentration inside the microgel particles. The swelling and de-swelling properties of these copolymer microgels have also been investigated in aqueous poly(ethylene oxide) (PEO) solutions, of different MW (2000-300 000). The corresponding absorbed amounts of PEO from solution onto the microgels have also been determined using a depletion method. The results, as a function of AAc content, cross-linker concentration, PEO MW, pH, and temperature, have been rationalized in terms of the ease and depth of penetration of the PEO chains into the various microgel particles and also the H-bonding associations between PEO and either the -COOH of the AAc moeities and/or the H of the amide groups (much weaker). Finally, the adsorption and desorption of the PEO molecules in to and out of the microgel particles have been shown to be extremely slow compared to normal diffusion time scales for polymer adsorption onto rigid surfaces.  相似文献   

7.
The use of microgel particles for controlled uptake and release of active species has great potential. The compatibility of microgel particles with their environment and the functionality of the particles can be achieved by modification of the core microgel through the addition of a shell. In this work, core-shell microgel particles, with a pH-responsive core (polyvinylpyridine) and a temperature-responsive shell (poly-N-isopropylacrylamide), have been prepared and characterized. The uptake and release of an anionic surfactant from the microgels has been investigated as a function of solution pH and temperature. The results indicate that electrostatic attraction between the anionic surfactant and the cationically charged core of the microgel particles is the dominant mechanism for absorption of the surfactant into the core-shell microgel particles.  相似文献   

8.
In this work, the influence of counterion valence and salt concentration on the effective charge of two types of thermoresponsive ionic microgel particles has been studied. The effective charge of the microgel at different swelling states has been experimentally determined from electrophoretic mobility measurements by solving the electrokinetic equations of the solvent for a single polyelectrolyte brush in the presence of an electric field, taking into account the friction of the solvent inside the polymer network. The experimental results have been compared to those obtained by means of the Ornstein‐Zernike integral formalism within the HNC relation. Results show that microgel bare charge is screened by the combined effect of counterion condensation and permeation inside the microgel particle. In addition to the electrostatic interaction, the steric exclusion exerted by the polymer plays an important role on the local ionic concentrations, especially for shrunken configurations. This steric term is responsible for the strong increase of the microgel effective charge experimentally observed when particles shrink for temperatures above the lower critical solution temperature. We also observe that, in the internal region of the microgel, charge electroneutrality is fulfilled, so the effective charge mainly arises from the region close to the microgel surface. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2038–2049.  相似文献   

9.
A series of four hydrophobically modified, diphenylazo-based organic salts have been prepared and characterized. To achieve this a C(x) (x = 4, 6, 8, or 10) hydrocarbon chain was inserted between the diphenylazo moiety and the quaternary ammonium headgroup of the salt. The absorption of each of the four modified organic salts into anionic microgel particles of poly(N-isopropylacrylamide-co-acrylic acid) has been studied at pH 8. In addition, the hydrodynamic diameters and electrophoretic mobilities of the microgel particles have been studied as a function of the organic salt concentration, also at pH 8. In addition to the electrostatic attraction between the quaternary ammonium head groups of the organic salts and the anionic groups within the microgel particles, hydrophobic association between the chains of the organic salts within the microgel particles plays a role, with this effect increasing strongly from x=4 to 10. Desorption of the x=4 and 6 organic salts occurs readily on changing, in situ, the pH from 8 to 2.5 (and thereby eliminating the electrostatic interaction) but is only partially achieved for the x=8 and 10 organic salts. Indeed, for the x=10 organic salt, only about 80% of the organic salt is desorbed upon dilution of the microgel particles into a large excess of water.  相似文献   

10.
Temperature-sensitive N-vinylcaprolactam (VCL)-based microgel particles were synthesized by emulsion polymerization in a batch reactor. To avoid the hydrolysis of VCL, optimized buffered reactions were carried out by using VCL as main monomer, N,N′-methylenebisacrylamide (BA) as cross-linker and a sugar-based comonomer (3-O-methacryloyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose, 3-MDG). The amounts of initiator, cross-linker, surfactant, comonomer, and reaction temperature were the reaction variables. The effects of these variables on the kinetic features of the different polymerizations were analyzed. The colloidal characterization of the microgel particles consists of the analysis of the evolution of the average hydrodynamic diameters as a function of the temperature of the medium. The results showed that in all cases BA reacted faster than VCL. All final microgel particles showed swelling-de-swelling behavior by changing the temperature of the medium in which they are dispersed. Initially formed microgel particles were not temperature-sensitive being necessary up to about 30% of VCL conversion for the onset of the swelling-de-swelling behavior. The final colloidal characteristics of these new microgels can be tuned by modulating the reaction variables.  相似文献   

11.
The interaction between carboxylic acid-stabilised gold nanoparticles (AuNP) and pH-responsive microgels is shown. The microgel particles are a copolymer of N-[3-(dimethylamino)propyl]methacrylamide (DMAPMA) and N-isopropylacrylamide (NIPAM). The microgel properties are presented by their hydrodynamic diameter and electrophoretic mobility in response to pH. These microgel particles are pH-responsive under neutral conditions decreasing in diameter beyond pH 7. The dispersion characteristics of AuNP adsorbed onto the microgel network are shown with respect to adsorbed amount and the pH-responsive properties of the AuNP. This data is presented between pH 3 and 6 where the microgel properties remain constant. Asymmetric adsorption of AuNP onto poly(DMAPMA-co-NIPAM) microgels is achieved by adsorption of nanoparticles, from the aqueous phase, onto microgel-stabilised oil-in-water emulsions. These asymmetrically modified microgels display very different dispersion behaviour, in response to pH, due to their dipolar nature.  相似文献   

12.
Composite hydrogels—macroscopic hydrogels with embedded microgel particles—are expected to respond to external stimuli quickly because microgels swell much faster than bulky gels. In this work, the kinetics of the pH‐induced swelling of a composite hydrogel are studied using turbidity measurements. The embedded microgel is a pH‐ and thermosensitive poly(N‐isopropylacrylamide‐co‐acrylic acid) microgel and the hydrogel matrix is polyacrylamide. A rapid pH‐induced swelling of the embedded microgel particles is observed, confirming that composite hydrogels respond faster than ordinary hydrogels. However, compared with the free microgels, the swelling of the embedded microgel is much slower. Diffusion of OH? into the composite hydrogel film is identified as the main reason for the slow swelling of the embedded microgel particles, as the time of the pH‐induced swelling of this film is comparable to that of OH? diffusion into the film. The composition of the hydrogel matrix does not significantly change the characteristic swelling time of the composite hydrogel film. However, the swelling pattern of the film changes with composition of the hydrogel matrix.  相似文献   

13.
The main objective of this study is to prepare, thermally, sensitive microgel particles bearing thiol groups via precipitation polymerization of N-isopropylacrylamide (NIPAM), methylenebisacrylamide (MBA) and vinylbenzylisothiouronium chloride (VBIC) using 2-2′-azobis(2-amidinopropane)-dihydrochloride (V50) as initiator. The influence of various parameters has been investigated as a systematic study to point out the role of each reactant on polymerization conversion, and consequently, on particles and water-soluble polymer formation. The final microgel particles were characterized with respect to particle size and swelling ability. The aim of this paper is to complete our first short communication; Macromolecular symposia, 2000. 150: p. 283–290.  相似文献   

14.
Temperature-responsive polymers are of considerable interest in the literature. In this work the ability to combine temperature-responsive polymer-solvent interactions with architectural control to achieve a range of macroscopic effects is considered. The first part of the work considers poly(DEA) (N,N-dieth ylacrylamide) microgel particles. The particles exhibit temperature-triggered particle collapse at temperatures more than ca. 27 °C. As a consequence concentrated temperature-responsive microgel dispersions change from gels to fluids when heated. The opposite effect is observed when dispersions or emulsions are stabilised by temperature-responsive polymer surfactants. Recent results involving a gel-forming castor oil-in-water emulsion are considered. The gelled emulsion releases a model drug (lidocaine) according to first-order kinetics. We extend the principle of temperature-triggered control of particle-surface interactions to test a new approach for immobilising particles on surfaces. The method consists of electrodepositing Laponite particles onto a carbon surface, grafting of poly(NIPAM) (N-isopropylacrylamide) onto the deposited particles and then increasing the temperature of the modified surface to trigger capture of dispersed polystyrene particles. This new approach uses chemistry that is potentially applicable to any conductive surface.  相似文献   

15.
The absorption of two hydrophobically modified organic salts (HMOSs), containing azobenzene units, into poly(N-isopropylacrylamide-co-acrylic acid) microgel particles has been studied at pH 8 and 20 °C. These dispersions were then irradiated with UV light (wavelength 365 nm) for 10 min to observe the effect on the microgel particle properties, such as the adsorbed amount of the HMOS, the particle size, and the electrophoretic mobility. We show that irradiation of these dispersions with UV light can lead to induced, partial desorption of the HMOS molecules, with concomitant changes in the size and electrophoretic mobility of the microgel particles. This is due to a conformational switch (trans-form to cis-form) in the HMOS molecules, which reduces the strength of the hydrophobic interaction between the HMOS molecules and the isopropyl moieties within the microgel network. Moreover, the original absorbed amounts, size, and electrophoretic mobility values can be largely restored after storage in the dark for extended periods.  相似文献   

16.
Near-monodisperse, sterically stabilized poly(2-vinylpyridine) (P2VP) microgels were synthesized by emulsion polymerization. These particles exhibited completely reversible pH-responsive swelling/deswelling behavior in aqueous solution. Stopped-flow light scattering was employed to investigate the kinetics of pH-induced deswelling in highly dilute dispersions. Upon a pH jump from 2 to various final solution pH values (>or=5.4), the scattered light intensity of an aqueous dispersion of a 1,960 nm microgel exhibited an abrupt initial increase, followed by a gradual decrease to the final equilibrium value. The whole microgel-to-latex deswelling process occurred over time scales of approximately 0.5-1.0 s, which is much slower than the kinetics for latex-to-microgel swelling. The microgel deswelling kinetics depends on the final pH, with a higher final pH leading to a faster rate of shrinkage. Close inspection of the deswelling kinetics during the early stages (<0.2 s) revealed that initial microgel collapse occurred within approximately 50 ms, with more rapid transitions being observed when higher final pH values were targeted. Addition of external salt significantly accelerates the kinetics of deswelling. Systematic studies of the microgel-to-latex transition for a series of six near-monodisperse P2VP particles (with swollen microgel diameters ranging from 1270 to 4230 nm) has also been investigated. The characteristic deswelling time for initial microgel collapse, tau deswell, correlated fairly well with the initial swollen microgel radius, R, in agreement with the Tanaka equation. Moreover, the collective diffusion coefficient of the gel network, D, calculated from the slope of the tau deswell- R (2) curve, was of the order of 10 (-7) cm (2) s (-1).  相似文献   

17.
The interaction between lightly cross-linked poly(acrylic acid) (pAA) microgels (50-150 microm in diameter) and poly-L-lysine (pLys) was studied as a function of pH, ionic strength, peptide size, and concentration. The swelling response and distribution of polypeptides within microgel particles was monitored by micromanipulator-assisted light microscopy and confocal laser scanning microscopy, while binding isotherms of pLys in the microgels were determined spectrophotometrically. Conformational changes of pLys were investigated by circular dichroism. The molecular weight of pLys was found to influence the degree of peptide-induced microgel deswelling, largely due to limitation of peptides larger than the effective network mesh size to penetrate the entire gel. Large peptides were concentrated within a surface layer of the gel particles, and at low ionic strength this dense surface layer was shown to act as a largely steric barrier for further penetration of compounds into the gel core. Small peptides, however, distributed evenly throughout the microgel particles and were able to create large microgel volume reductions. The deswelling of microgels increased with decreasing pH, while the uptake of pLys was significantly reduced at low pH. The effect of ionic strength on the interactions of pLys and oppositely charged pAA microgels was moderate and only pronounced for deswelling of gels at high pH. A significant increase in the alpha-helix content of pLys interacting with the oppositely charged microgels was observed for high molecular weight peptides, and the extent of alpha-helix formation was as expected more pronounced at high pH, i.e., at high charge density of the microgels but reduced charge density of the peptides.  相似文献   

18.
Stimuli-sensitive emulsions stabilized by microgel particles consisting of poly-(N-isopropylacrylamide-co-methacrylicacid) (PNIPAM-co-MAA) and being responsive to both pH and temperature have been investigated with respect to the visco-elastic properties of the interfacial layer. Properties of the interfacial layer were probed by means of shear and dilatational rheology as well as by compression isotherms and are related to the microgel packing at the interface as visualized by cryogenic scanning electron microscopy. The corresponding pH dependent emulsion stability is strongly correlated with the visco-elastic properties of the microgel covered oil-water interface. At high pH when the microgels are charged, a structure of partially interconnected microgels is found that provides elastic, soft gel-like interfaces. At low pH, however, the uncharged microgels are densely packed and the interface is rather brittle. Obviously, these pH dependent visco-elastic properties of the microgel layer at the oil-water interface play a determining role in the stability of emulsion droplets and allow us to prepare very stable emulsions when the microgels are charged and to break the emulsion by changing the pH.  相似文献   

19.
This review presents an overview on the research on pH-responsive microgel particles in the last 10 years. Microgels are cross-linked latex particles that are swollen in a good solvent. Significant quantitative studies have been conducted to investigate the swelling behavior (microscopic) and rheological (macroscopic) properties of the pH-responsive microgel particles as a function of neutralization degree, ionic strength, and cross-linked density. Mono-dispersed, alkali-swellable microgels containing carboxylic acid lattices, whose properties display extreme pH sensitivity in water is considered in detail in terms of swelling behavior and rheological properties. Their stability in solution and ability to undergo reversible volume phase transitions in response to pH makes them ideal model systems for the development of a semi-empirical as well as theoretical approach for predicting the viscosity of dilute and concentrated hard and soft sphere systems. The review concludes with a discussion of some recent applications of pH-responsive microgel particles.  相似文献   

20.
Lightly cross-linked poly(4-vinylpyridine)-silica nanocomposite microgel particles have been recently reported to act as pH-responsive particulate emulsifiers [Fujii, S.; Read, E. S.; Armes, S. P.; Binks, B. P. Adv. Mater. 2005, 17, 1014]. In this work, the synthesis and performance of such nanocomposite microgel particles are studied in more detail. Scanning electron microscopy, dynamic light scattering, nitrogen microanalyses, thermogravimetric analysis, aqueous electrophoresis, and acid-base titration were used to characterize the nanocomposites in terms of their particle size and morphology, polymer and silica contents, surface compositions, and critical swelling pH, respectively. Depending on the polarity of the oil phase and the purity of the nanocomposite particles, either oil-in-water or water-in-oil emulsions could be prepared at pH 8-9, but not at pH 2-3. These emulsions were characterized in terms of their emulsion type, mean droplet diameter, and morphology using electrical conductivity, light diffraction, and both electron and optical microscopy. In some cases, rapid demulsification could be induced by lowering the solution pH: addition of acid led to protonation of the 4-vinylpyridine residues, which imparted cationic microgel character to the nanocomposite particles. Cross-linking of the nanocomposite microgel particles is essential for their optimum performance as a pH-responsive emulsifier, but unfortunately it is not sufficient to allow recycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号