首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(amidoamine) (PAMAM) dendrimers were shown to adsorb strongly on negatively charged latex particles, and their effect on the particle charge and aggregation behavior was investigated by light scattering and electrophoretic mobility measurements. Time-resolved simultaneous static and dynamic light scattering was used to measure absolute aggregation rate constants. With increasing dendrimer dose, the overall charge could be tuned from negative to positive values through the isoelectric point (IEP). The aggregation is fast near the IEP and slows down further away. With decreasing ionic strength, the region of fast aggregation narrows and the dependence of the aggregation rate on the dendrimer dose is more pronounced. Surface charge heterogeneities become important for higher dendrimer generations. They widen the fast aggregation region, reduce the dependence of the aggregation rate on the dendrimer dose, and lead to an acceleration of the rate in the fast aggregation regime near the IEP. The ratio of the dendrimer charge and the particle charge exceeds the stoichiometric ratio of unity substantially and further increases with increasing generation. The tentative interpretation of such superstoichiometric charge neutralization involves coadsorption of anions and the finite thickness of the adsorbed dendrimer layer.  相似文献   

2.
Charging properties and colloidal stability of negatively charged polystyrene latex particles were investigated in the presence of linear poly(ethylene imine) (LPEI) of different molecular masses by electrophoresis and dynamic light scattering (DLS). Electrophoretic mobility measurements illustrate that LPEI strongly adsorbs on these particles leading to charge neutralization at isoelectric point (IEP) and charge reversal. Time-resolved DLS experiments indicate that the aggregation of the latex particles is rapid near the IEP and slows down away from this point. Surprisingly, the colloidal stability does not depend on the molecular mass, which indicates that the adsorbed LPEI layer is rather homogeneous.  相似文献   

3.
In the case of cationic polystyrene latex, the adsorption of anionic surfactants involves a strong electrostatic interaction between both the particle and the surfactant, which may affect the conformation of the surfactant molecules adsorbed onto the latex-particle surface. The adsorption isotherms showed that adsorption takes place according to two different mechanisms. First, the initial adsorption of the anionic surfactant molecules on cationic polystyrene surface would be due to the attractive electrostatic interaction between both ionic groups, laying the alkyl-chains of surfactant molecules flat on the surface as a consequence of the hydrophobic interaction between these chains and the polystyrene particle surface, which is predominantly hydrophobic. Second, at higher surface coverage the adsorbed surfactant molecules may move into a partly vertical orientation with some head groups facing the solution. According to this second mechanism the hydrophobic interactions of hydrocarbon chains play an important role in the adsorption of surfactant molecules at high surface coverage. This would account for the very high negative mobilities obtained at surfactant concentration higher than 5×10–7 M. Under high surface-coverage conditions, some electrophoretic mobility measurements were performed at different ionic strength. The appearance of a maximum in the mobility-ionic strength curves seems to depend upon alkyl-chain length. Also the effects of temperature and pH on mobilities of anionic surfactant-cationic latex particles have been studied. The mobility of the particles covered by alkyl-sulphonate surfactants varied with the pH in a similar manner as it does with negatively charged sulphated latex particles, which indicates that the surfactant now controls the surface charge and the hydrophobic-hydrophilic character of the surface.Dedicated to the memory of Dr. Safwan Al-Khouri IbrahimPresented at the Euchem Workshop on Adsorption of Surfactants and Macromolecules from Solution, Åbo (Turku), Finland, June 1989  相似文献   

4.
Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy was used to study the adsorption of charged silica particles onto TiO(2) particles coated with anionic sodium polyacrylate (NaPA) or cationic poly(diallyldimethylammonium) chloride (PDADMAC). To the best of our knowledge, this is the first time that IR spectroscopy has been used to study the interaction of a polymer layer on one particle with a second different particle. The results show that, once adsorbed on the TiO(2) particle, the PDADMAC or the NaPA does not transfer to the silica particles. In the case of NaPA coated TiO(2), positively charged silica particles deposit on the TiO(2) and this is accompanied by a change in the relative intensities of the bands due to COOH and COO(-) groups. From this change in band intensity, it is calculated that only approximately 6% of the COO(-) groups located in the loops and tails bind to the silica particle. This shows that the polymer bridges the two particles through an electrostatic interaction with the outer COO(-) groups. Similarly, in the case of the TiO(2) particles coated with PDADMAC, negatively charged silica deposits on the TiO(2) and this is accompanied by an increase in intensity of the symmetric bending mode of the (+)N(CH(3))(3) group. This change in band intensity arises from the binding of these cationic sites of the polymer to the negative surface sites on the silica.  相似文献   

5.
The absorption and fluorescence properties of a polyphenylethynylene based conjugated polyelectrolyte with sulfonate solubilizing groups (PP2) are shown to change dramatically with solution conditions because of the equilibrium between unaggregated and aggregated forms of the polymer. The fluorescence of PP2 is strongly quenched on addition of counterions such as Na+, K+, Li+, and TBA+, an effect which arises from the creation of salt stabilized aggregates. The formation of aggregates has been further corroborated by concentration and temperature studies in water and comparisons to dimethylsulfoxide solvent, in which the polymer does not aggregate. In aqueous solutions, the addition of the cationic surfactant, octadecyltrimethyl ammonium, causes the polymer aggregates to dissociate and creates polymer/surfactant aggregates that have spectral properties like that of the unaggregated polymer.  相似文献   

6.
A facile synthesis of functionalized poly[3(4)-methylstyrene] (PMS) latex particles containing aldehyde and carboxylic acid groups was achieved via an emulsion polymerization of 3(4)-methylstyrene in the presence of sodium dodecyl sulfonate, followed by an in-situ oxidation catalyzed by copper(II) chloride and t-butyl hydroperoxide (t-BuOOH) in the presence of t-butyl alcohol (t-BuOH). The structure of the anionic surfactant, metal catalyst, organic solvent, oxidant, and their concentrations strongly affected the rate of oxidation and the stability of the emulsion. The average size of the polymer latex particles was found to increase after oxidation, and the polymer was slightly crosslinked. A free-radical mechanism is proposed involving metal-catalyzed decomposition of t-BuOOH and benzylic oxidation. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1863–1872, 1997  相似文献   

7.
We have examined the polymer/surfactant interaction in mixed aqueous solutions of cationic surfactants and anionic polyelectrolytes combining various techniques: tensiometry, potentiometry with surfactant-selective electrodes, and viscosimetry. We have investigated the role of varying polymer charge density, polymer concentration, surfactant chain length, polymer backbone rigidity, and molecular weight on the critical aggregation concentration (Cac) of mixed polymer/surfactant systems. The Cac of these systems, estimated from tensiometry and potentiometry, is found to be in close agreement. Different Cac variations with polymer charge density and surfactant chain length were observed with polymers having persistence lengths either smaller or larger than surfactant micelle size, which might reflect a different type of molecular organization in the polymer/surfactant complexes. The surfactant concentration at which the viscosity starts to decrease sharply is different from the Cac and probably reflects the polymer chain shrinkage due to surfactant binding.  相似文献   

8.
The adsorption of two polyampholytes (a random copolymer of -glutamic acid and -lysine, and a well-defined tetramer of -lysyl- -glutamyl-glycine) onto positively and negatively charged latex was studied as a function of the pH and the ionic strength. The adsorbed amount proved to be almost independent of the salt concentration. The pH dependence was found to follow the same trends on negatively charged and positively charged latex. At low pH, where the polyampholytes are positively charged, a high adsorbed amount was found irrespective of the sign of the surface charge. At high pH, where the macromolecules are negatively charged, no adsorption was measured, not even with the positive latex. This is probably due to the very good solubility of the polyampholytes at this pH. Electrophoretic mobility measurements revealed that already at very low concentrations of polyampholyte charge reversal of the particles occurred.  相似文献   

9.
Coagulating effect of cation-active polyelectrolytes, a copolymer of N,N-dimethyl-N,N-diallylammonium chloride and maleic acid, a fraction of the homopolymer of N,N-dimethyl-N,N-diallylammonium chloride, and low-molecular cation-active surfactant (1-dodecylpyridinium bromide) on a diluted polystyrene latex at pH 7 and 3 was studied. The presence of macromolecules with different amounts of cation groups in the copolymer accounts for the appearance of several peaks in the curves describing the dependence of a “minute” optical density of the latex synthesized in the presence of a purified surfactant, sulfuric acid monododecyl ester sodium salt, on the copolymer additive.  相似文献   

10.
Novel, monodisperse charged colloidal particles of polystyrene cross linked with divinylbenzene and surface-grafted with acrylic acid were synthesized by emulsion polymerization and were characterized by estimating the dissociable surface charge by conductivity titration, the particle effective charge by conductivity verses particle concentration, and the particle size by dynamic light scattering and atomic force microscopy. The structural ordering and dynamics were investigated as a function of the volume fraction of the particles using static and dynamic light scattering, respectively. Furthermore, from the electrophoresis measurements, these particles are found to have a high salt tolerance due to increases in charge as a function of salt concentration.  相似文献   

11.
Summary Flocculation of negatively charged colloids by anionic polyelectrolytes, resulting from the adsorption of polymers on the colloid surface and from bridging of polymer chains between solid particles, is only possible if an appropriate concentration of electrolyte is present in the solution. Complex formation in the immediate vicinity of the sol surface between the counter cation and the functional groups of the polyelectrolyte plays a major role in the attachment of anionic polyelectrolytes to negative hydrophobic sols.Stability constants for Cu(II) polyacrylate and for the Ca complexes of a polyacrylic acid, hydrolyzed polyacrylamide and polystyrene sulfonate have been determined, and the effect of solution variables upon flocculation of AgBr/Br sols by anionic polyelectrolytes have been investigated. Ca+2 ions affect the adsorption of polystyrenesulfonate on a negatively polarized mercury surface, as reflected in measurements of the differential capacitance; the presence of complex bound functional groups apparently changes the structure and orientation ability of the adsorbed polymer.With 5 figures in 10 details and 2 tables  相似文献   

12.
13.
The stabilization and flocculation behaviour of colloidal latex particles covered with cationic polyelectrolytes (PE) is studied with photon correlation spectroscopy and zetapotential measurements. Diffusion coefficients, flocculation rate constants and zetapotentials have been determined as a function of adsorbed amount of cationic poly-(diallyl-dimethyl-ammoniumchloride) (PDADMAC) of different molar masses and of statistic copolymers of DADMAC and N-methyl-N-vinyl-acetamide (NMVA) of various compositions in water and at high ionic strength. Flocculation by van der Waals attraction can be observed if the zetapotential is low. This occurs, if the surface charge is screened by the oppositely charged cations. Furthermore, in the case of adsorption of high molecular polycations mosaic flocculation occurs if the adsorbed amount is low. At high ionic strength, flocculation takes place if the adsorbed amount is below the adsorption plateau. If the adsorption plateau is reached the suspensions become stabilized. In water the charge reversal at full coverage leads to electrosteric stabilization both with low and high molar mass polycations. At high ionic strength only polycations with high molar mass are able to stabilize the suspension. If a certain molar mass of the polycation is exceeded, steric stabilization of the suspension occurs due to the formation of long adsorbed PE tails and their osmotic repulsion. The layer thicknesses are determined as a function of the molar mass. Received: 4 July 2000/Accepted: 18 August 2000  相似文献   

14.
The complexation of anionic latex particles with two series of cationic copolymers is studied. The copolymers of the first series contain cationic and electroneutral (zwitter ion) hydrophilic units. The electrostatic adsorption of these copolymers on the surface of latex particles is accompanied by the formation of multiple salt bridges between cationic copolymer units and surface anionic groups. The dependence of ultimate adsorption on the molar fraction of cationic groups in copolymer α is described by a bell-shaped curve with a maximum at α = 0.05−0.10 and a long horizontal portion at α > 0.24. In terms of the adsorption theory of polyampholytes, such a pattern of the adsorption curve results from the compromise between the attraction of polymer chains to the surface induced by their polarization in the electric field of particles and the repulsion of like charged macromolecular units. The stability of complexes with the copolymers of the first series in water-salt media increases with an increase in α. The copolymers of the second series contain cationic and hydrophobic units. In this case, an increase in α is accompanied by a decrease in the amount of the adsorbed polymer throughout the studied α range (0.24–1). The complexes are stabilized not only via electrostatic interactions but also via hydrophobic interactions. A decrease in α decreases the role of electrostatics in stabilization of the complexes; however, this effect is compensated for by an increase in the number of hydrophobic contacts. This allows the stability of complexes to be preserved in concentrated water-salt solutions. The results of this study indicate that the stability of interfacial layers with the participation of cationic copolymers can be changed in a wide range by varying the ratio of ionic and electroneutral (hydrophilic or hydrophobic) comonomers in macromolecules.  相似文献   

15.
In this paper theoretical and experimental results for water softening by bipolar membranes in the presence of polyelectrolytes have been presented. A modified capillary model is introduced for flow of a multiion solution through the membrane. The most important modifications are: an integral boundary condition in Poisson equation and a coupling coefficient in the convective molar flux by using the modified Faxen equation. In addition, electrical permittivity of solution has not been considered as a constant. The predictions of the model were compared well with the experimental data obtained by using bipolar membranes in a recirculating test system in the presence of polyelectrolytes.  相似文献   

16.
The interaction between organic latex polymers and the surface of hydrating cement was investigated by measuring the zeta potential and adsorbed amount of polymer on cement. First, differently charged model latex particles were synthesized in aqueous media by well-known emulsion polymerization technique. The latex polymers were characterized by differential scanning calorimetry (DSC), dynamic light scattering (DLS) and environmental scanning electron microscopy (ESEM). Electrokinetic latex surface properties were investigated by means of streaming potential measurements using a particle charge detector (PCD). It is shown that the anionic latexes adsorb a considerable amount of Ca2+ from the cement pore solution. Next, adsorption of the latex polymers on the surface of hydrating cement was confirmed by zeta potential measurements using the electroacoustic method. A water to cement ratio in the cement paste as low as 0.5 was studied, representing actual conditions in mortar and concrete. Additionally, adsorption isotherms were determined in a sedimentation test using the depletion method. For all latex polymers, Langmuir type adsorption isotherms were found. The latex dosages required to achieve saturated adsorption on the cement surface obtained from zeta potential measurements correspond well with those determined in the sedimentation test. Electron microscopy photographs confirm that the charged latex polymers adsorb selectively on surface areas of hydrating cement showing opposite charge. This way, domains of organic latex polymers exist on the cement surface. They provide adhesion between the inorganic cement matrix and the organic polymer film formed later on by particle coalescence as a result of cement hydration and drying.  相似文献   

17.
This work shows that low charge density poly(p-phenylene-ethynylene)s (PPE-SO3Na-L and PPE-CO2Na-L), which feature sulfonate and carboxylate groups on every other phenyl ring, form aggregates in water, whereas high charge density poly(p-phenylene-ethynylene)s (PPE-SO3Na-H and PPE-CO2Na-H), which possess sulfonate or carboxylate groups on every phenyl ring, do not aggregate in water. The formation of aggregates of PPE-SO3Na-L and PPE-CO2Na-L is demonstrated by comparing the concentration and temperature dependence of their steady-state spectra in water to that in DMSO, in which the two polymers do not aggregate. For the weak polyelectrolytes PPE-CO2Na-H and PPE-CO2Na-L, the solution pH was changed to vary the charge density. In addition, the cationic surfactant, octadecyltrimethyl ammonium, is shown to dissociate the low charge density polymer aggregates and to form supramolecular complexes with each of the different polyelectrolytes. Fluorescence correlation spectroscopy was applied to provide insight into the sizes of aggregates under different solution conditions.  相似文献   

18.
Crosslinking of strongly charged chains via multivalent ions of valence z was treated within the Flory approach, which accounts only for the treelike architecture of the clusters formed. Density–density correlations due to the electrostatic nature of the system were considered with a modified random‐phase approximation. At a certain concentration of multivalent ions that play the role of effective stickers among z monomers, an infinitely large polymer network was formed. We analyzed the gelation driven by the formation of locally neutral clusters induced by divalent and trivalent ions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 766–776, 2004  相似文献   

19.
Tetrapositively charged phthalocyanines and CdTe quantum dots (QDs) capped with thioglycolic acid (TGA) and mercaptopropionic acid (MPA) were synthesized. The response of the tetrapositively charged zinc phthalocyanines in the presence of quantum dots was studied. Aggregation and charge transfer were observed for [tetramethyl-2,(3)-[tetra-(2-mercaptopyridinephthalocyaninato)]zinc(II)]4+ (TmTMPyZnPc), however aggregation proved to be the more prominent process of the two. Fluorescence resonance energy transfer (FRET) was observed with [tetramethyl-2,(3)-[tetra-(2-pyridyloxyphthalocyaninato)]zinc(II)]4+ (TmTPyZnPc). In the FRET study the efficiency of FRET with TmTPyZnPc was determined to be 21% for both MPA and TGA capped CdTe QDs. For the charge transfer study the fluorescence of the quantum dots was quenched by the TmTMPyZnPc used, and from these quenching studies the quenching constants, binding constants and number of binding sites on the quantum dots were determined.  相似文献   

20.
The controlled generation of 2D aggregate networks is studied experimentally using micrometer-sized polystyrene latex particles attached to the oil-water interface. Starting from an initially crystalline monolayer, appropriate combinations of carefully added electrolyte and surfactant enable control over both the fractal dimension and the kinetics of aggregation. Remarkably, the colloidal crystals formed upon first spreading remain stable, even for days, when substantial amounts of electrolyte are added to the aqueous phase. Pressure-area isotherms reveal a slow time evolution of the electrostatic dipole-dipole interaction. When the electrostatic interaction has been sufficiently weakened, aggregation proceeds in well-defined, reproducible manner. The aggregation process is analyzed using quantitative video microscopy. The evolution of the cluster size distribution and its moments is characterized, and static and dynamic scaling exponents are derived to identify the nature of the aggregation process. In the range of concentrations studied here, the kinetics all agree with a "fast", diffusion-limited cluster type of aggregation. However, the fractal dimension strongly depends on the composition of the aqueous subphase. Rather dense structures are found when only electrolyte is used, whereas more open structures are obtained when even small amounts of surfactant are added. It is suggested that this structural dependency is related to the effect of surfactant on the contact angle and its consequences for the anisotropic nature of the capillary interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号